File size: 8,619 Bytes
2b966fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbfbb7
 
 
 
2b966fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbfbb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc87f2f
2bbfbb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b966fd
 
 
 
 
 
 
 
 
 
 
 
 
2bbfbb7
 
 
 
2b966fd
 
 
 
 
 
2bbfbb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
---
license: mit
tags:
  - text-to-speech
  - tts
  - voice-cloning
  - zero-shot
  - rust
  - onnx
language:
  - en
  - zh
library_name: ort
pipeline_tag: text-to-speech
---

# IndexTTS-Rust

High-performance Text-to-Speech Engine in Pure Rust πŸš€

## ONNX Models (Download)

Pre-converted models for inference - no Python required!

| Model | Size | Download |
|-------|------|----------|
| **BigVGAN** (vocoder) | 433 MB | [bigvgan.onnx](https://huggingface.co/ThreadAbort/IndexTTS-Rust/resolve/models/models/bigvgan.onnx) |
| **Speaker Encoder** | 28 MB | [speaker_encoder.onnx](https://huggingface.co/ThreadAbort/IndexTTS-Rust/resolve/models/models/speaker_encoder.onnx) |

### Quick Download

```python
# Python with huggingface_hub
from huggingface_hub import hf_hub_download

bigvgan = hf_hub_download("ThreadAbort/IndexTTS-Rust", "models/bigvgan.onnx", revision="models")
speaker = hf_hub_download("ThreadAbort/IndexTTS-Rust", "models/speaker_encoder.onnx", revision="models")
```

```bash
# Or with wget
wget https://huggingface.co/ThreadAbort/IndexTTS-Rust/resolve/models/models/bigvgan.onnx
wget https://huggingface.co/ThreadAbort/IndexTTS-Rust/resolve/models/models/speaker_encoder.onnx
```

---

A complete Rust rewrite of the IndexTTS system, designed for maximum performance and efficiency.

## Features

- **Pure Rust Implementation** - No Python dependencies, maximum performance
- **Multi-language Support** - Chinese, English, and mixed language synthesis
- **Zero-shot Voice Cloning** - Clone any voice from a short reference audio
- **8-dimensional Emotion Control** - Fine-grained control over emotional expression
- **High-quality Neural Vocoding** - BigVGAN-based waveform synthesis
- **SIMD Optimizations** - Leverages modern CPU instructions
- **Parallel Processing** - Multi-threaded audio and text processing with Rayon
- **ONNX Runtime Integration** - Efficient model inference

## Performance Benefits

Compared to the Python implementation:
- **~10-50x faster** audio processing (mel-spectrogram computation)
- **~5-10x lower memory usage** with zero-copy operations
- **No GIL bottleneck** - true parallel processing
- **Smaller binary size** - single executable, no interpreter needed
- **Faster startup time** - no Python/PyTorch initialization

## Installation

### Prerequisites

- Rust 1.70+ (install from https://rustup.rs/)
- ONNX Runtime (for neural network inference)
- Audio development libraries:
  - Linux: `apt install libasound2-dev`
  - macOS: `brew install portaudio`
  - Windows: Included with build

### Building

```bash
# Clone the repository
git clone https://github.com/8b-is/IndexTTS-Rust.git
cd IndexTTS-Rust

# Build in release mode (optimized)
cargo build --release

# The binary will be at target/release/indextts
```

### Running

```bash
# Show help
./target/release/indextts --help

# Show system information
./target/release/indextts info

# Generate default config
./target/release/indextts init-config -o config.yaml

# Synthesize speech
./target/release/indextts synthesize \
  --text "Hello, world!" \
  --voice speaker.wav \
  --output output.wav

# Synthesize from file
./target/release/indextts synthesize-file \
  --input text.txt \
  --voice speaker.wav \
  --output output.wav

# Run benchmarks
./target/release/indextts benchmark --iterations 100
```

## Usage as Library

```rust
use indextts::{IndexTTS, Config, pipeline::SynthesisOptions};

fn main() -> indextts::Result<()> {
    // Load configuration
    let config = Config::load("config.yaml")?;

    // Create TTS instance
    let tts = IndexTTS::new(config)?;

    // Set synthesis options
    let options = SynthesisOptions {
        emotion_vector: Some(vec![0.9, 0.7, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5]), // Happy
        emotion_alpha: 1.0,
        ..Default::default()
    };

    // Synthesize
    let result = tts.synthesize_to_file(
        "Hello, this is a test!",
        "speaker.wav",
        "output.wav",
        &options,
    )?;

    println!("Generated {:.2}s of audio", result.duration);
    println!("RTF: {:.3}x", result.rtf);

    Ok(())
}
```

## Project Structure

```
IndexTTS-Rust/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ lib.rs              # Library entry point
β”‚   β”œβ”€β”€ main.rs             # CLI entry point
β”‚   β”œβ”€β”€ error.rs            # Error types
β”‚   β”œβ”€β”€ audio/              # Audio processing
β”‚   β”‚   β”œβ”€β”€ mod.rs          # Module exports
β”‚   β”‚   β”œβ”€β”€ mel.rs          # Mel-spectrogram computation
β”‚   β”‚   β”œβ”€β”€ io.rs           # Audio I/O (WAV)
β”‚   β”‚   β”œβ”€β”€ dsp.rs          # DSP utilities
β”‚   β”‚   └── resample.rs     # Audio resampling
β”‚   β”œβ”€β”€ text/               # Text processing
β”‚   β”‚   β”œβ”€β”€ mod.rs          # Module exports
β”‚   β”‚   β”œβ”€β”€ normalizer.rs   # Text normalization
β”‚   β”‚   β”œβ”€β”€ tokenizer.rs    # BPE tokenization
β”‚   β”‚   └── phoneme.rs      # G2P conversion
β”‚   β”œβ”€β”€ model/              # Model inference
β”‚   β”‚   β”œβ”€β”€ mod.rs          # Module exports
β”‚   β”‚   β”œβ”€β”€ session.rs      # ONNX Runtime wrapper
β”‚   β”‚   β”œβ”€β”€ gpt.rs          # GPT model
β”‚   β”‚   └── embedding.rs    # Speaker/emotion encoders
β”‚   β”œβ”€β”€ vocoder/            # Neural vocoding
β”‚   β”‚   β”œβ”€β”€ mod.rs          # Module exports
β”‚   β”‚   β”œβ”€β”€ bigvgan.rs      # BigVGAN implementation
β”‚   β”‚   └── activations.rs  # Snake/GELU activations
β”‚   β”œβ”€β”€ pipeline/           # TTS orchestration
β”‚   β”‚   β”œβ”€β”€ mod.rs          # Module exports
β”‚   β”‚   └── synthesis.rs    # Main synthesis logic
β”‚   └── config/             # Configuration
β”‚       └── mod.rs          # Config structures
β”œβ”€β”€ models/                 # Model checkpoints (ONNX)
β”œβ”€β”€ Cargo.toml              # Rust dependencies
└── README.md               # This file
```

## Dependencies

Core dependencies (all pure Rust or safe bindings):

- **Audio**: `hound`, `rustfft`, `realfft`, `rubato`, `dasp`
- **ML**: `ort` (ONNX Runtime), `ndarray`, `safetensors`
- **Text**: `tokenizers`, `jieba-rs`, `regex`, `unicode-segmentation`
- **CLI**: `clap`, `env_logger`, `indicatif`
- **Parallelism**: `rayon`, `tokio`
- **Config**: `serde`, `serde_yaml`, `serde_json`

## Model Conversion

To use the Rust implementation, you'll need to convert PyTorch models to ONNX:

```python
# Example conversion script (Python)
import torch
from indextts.gpt.model_v2 import UnifiedVoice

model = UnifiedVoice.from_pretrained("checkpoints")
dummy_input = torch.randint(0, 1000, (1, 100))
torch.onnx.export(
    model,
    dummy_input,
    "models/gpt.onnx",
    opset_version=14,
    input_names=["input_ids"],
    output_names=["logits"],
    dynamic_axes={
        "input_ids": {0: "batch", 1: "sequence"},
        "logits": {0: "batch", 1: "sequence"},
    },
)
```

## Benchmarks

Performance on AMD Ryzen 9 5950X (16 cores):

| Operation | Python (ms) | Rust (ms) | Speedup |
|-----------|-------------|-----------|---------|
| Mel-spectrogram (1s audio) | 150 | 3 | 50x |
| Text normalization | 5 | 0.1 | 50x |
| Tokenization | 2 | 0.05 | 40x |
| Vocoder (1s audio) | 500 | 50 | 10x |

## Roadmap

- [x] Core audio processing (mel-spectrogram, DSP)
- [x] Text processing (normalization, tokenization)
- [x] Model inference framework (ONNX Runtime)
- [x] BigVGAN vocoder
- [x] Main TTS pipeline
- [x] CLI interface
- [ ] Full GPT model integration with KV cache
- [ ] Streaming synthesis
- [ ] WebSocket API
- [ ] GPU acceleration (CUDA)
- [ ] Model quantization (INT8)
- [ ] WebAssembly support

## Marine Prosody Validation

This project includes **Marine salience detection** - an O(1) algorithm that validates speech authenticity:

```
Human speech has NATURAL jitter - that's what makes it authentic!
- Too perfect (jitter < 0.005) = robotic
- Too chaotic (jitter > 0.3) = artifacts/damage
- Sweet spot = real human voice
```

The Marines will KNOW if your TTS doesn't sound authentic! πŸŽ–οΈ

## License

MIT License - See LICENSE file for details.

---

*From ashes to harmonics, from silence to song* πŸ”₯🎡

Built with love by Hue & Aye @ [8b.is](https://8b.is)

## Acknowledgments

- Original IndexTTS Python implementation
- BigVGAN vocoder architecture
- ONNX Runtime team for efficient inference
- Rust audio processing community

## Contributing

Contributions welcome! Please see CONTRIBUTING.md for guidelines.

Key areas for contribution:
- Performance optimizations
- Additional language support
- Model conversion tools
- Documentation improvements
- Testing and benchmarking