File size: 3,664 Bytes
2bbfbb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
//! ONNX Runtime session management (stubbed for initial conversion)
use crate::{Error, Result};
use ndarray::{Array, IxDyn};
use std::collections::HashMap;
use std::path::{Path, PathBuf};
use std::sync::{Arc, RwLock};
/// ONNX Runtime session wrapper (placeholder)
pub struct OnnxSession {
input_names: Vec<String>,
output_names: Vec<String>,
}
impl OnnxSession {
/// Load ONNX model from file (placeholder)
pub fn load<P: AsRef<Path>>(path: P) -> Result<Self> {
let path = path.as_ref();
if !path.exists() {
return Err(Error::FileNotFound(path.display().to_string()));
}
// Placeholder - actual ONNX loading would go here
log::info!("Loading ONNX model from: {}", path.display());
Ok(Self {
input_names: vec!["input".to_string()],
output_names: vec!["output".to_string()],
})
}
/// Run inference (placeholder)
pub fn run(
&self,
_inputs: HashMap<String, Array<f32, IxDyn>>,
) -> Result<HashMap<String, Array<f32, IxDyn>>> {
// Placeholder - returns empty output
let mut result = HashMap::new();
for name in &self.output_names {
let dummy = Array::zeros(IxDyn(&[1, 1]));
result.insert(name.clone(), dummy);
}
Ok(result)
}
/// Run inference with i64 inputs (placeholder)
pub fn run_i64(
&self,
_inputs: HashMap<String, Array<i64, IxDyn>>,
) -> Result<HashMap<String, Array<f32, IxDyn>>> {
let mut result = HashMap::new();
for name in &self.output_names {
let dummy = Array::zeros(IxDyn(&[1, 1]));
result.insert(name.clone(), dummy);
}
Ok(result)
}
pub fn input_names(&self) -> &[String] {
&self.input_names
}
pub fn output_names(&self) -> &[String] {
&self.output_names
}
}
/// Model cache for managing multiple ONNX sessions
pub struct ModelCache {
sessions: RwLock<HashMap<String, Arc<OnnxSession>>>,
model_dir: PathBuf,
}
impl ModelCache {
pub fn new<P: AsRef<Path>>(model_dir: P) -> Self {
Self {
sessions: RwLock::new(HashMap::new()),
model_dir: model_dir.as_ref().to_path_buf(),
}
}
pub fn get_or_load(&self, name: &str) -> Result<Arc<OnnxSession>> {
{
let cache = self.sessions.read().unwrap();
if let Some(session) = cache.get(name) {
return Ok(Arc::clone(session));
}
}
let model_path = self.model_dir.join(format!("{}.onnx", name));
let session = OnnxSession::load(&model_path)?;
let session = Arc::new(session);
{
let mut cache = self.sessions.write().unwrap();
cache.insert(name.to_string(), Arc::clone(&session));
}
Ok(session)
}
pub fn preload(&self, model_names: &[&str]) -> Result<()> {
for name in model_names {
self.get_or_load(name)?;
}
Ok(())
}
pub fn clear(&self) {
let mut cache = self.sessions.write().unwrap();
cache.clear();
}
pub fn is_cached(&self, name: &str) -> bool {
let cache = self.sessions.read().unwrap();
cache.contains_key(name)
}
pub fn cached_models(&self) -> Vec<String> {
let cache = self.sessions.read().unwrap();
cache.keys().cloned().collect()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_model_cache_creation() {
let cache = ModelCache::new("/tmp/models");
assert!(cache.cached_models().is_empty());
}
}
|