File size: 13,727 Bytes
e3e7558 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
//! Conversation Affect Tracking - Session-level comfort analysis
//!
//! After a conversation, Aye can determine: "This felt uneasy / ok / happy"
//! based on Marine prosody patterns over time.
//!
//! The key insight: jitter patterns reveal emotional state
//! - Rising jitter over conversation = increasing tension
//! - Stable low jitter = calm exchange
//! - High energy + low jitter = positive/confident
use super::prosody::MarineProsodyVector;
/// Comfort level classification
///
/// After a conversation, this represents the overall emotional tone.
/// Used by Aye to self-assess: "How did I make you feel?"
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ComfortLevel {
/// High jitter AND rising over session - tension/nervousness
Uneasy,
/// Stable but low energy, or mildly jittery but not escalating
Neutral,
/// Good energy, low/stable jitter - positive interaction
Happy,
}
impl ComfortLevel {
/// Convert to emoji representation
pub fn emoji(&self) -> &'static str {
match self {
ComfortLevel::Uneasy => "π",
ComfortLevel::Neutral => "π",
ComfortLevel::Happy => "π",
}
}
/// Convert to descriptive string
pub fn description(&self) -> &'static str {
match self {
ComfortLevel::Uneasy => "uneasy or tense",
ComfortLevel::Neutral => "neutral or stable",
ComfortLevel::Happy => "comfortable and positive",
}
}
/// Convert to numeric score (-1 = uneasy, 0 = neutral, 1 = happy)
pub fn score(&self) -> i8 {
match self {
ComfortLevel::Uneasy => -1,
ComfortLevel::Neutral => 0,
ComfortLevel::Happy => 1,
}
}
}
/// Conversation affect summary
///
/// Aggregates Marine prosody data over an entire conversation to
/// provide session-level emotional assessment.
#[derive(Debug, Clone)]
pub struct ConversationAffectSummary {
/// Comfort level of the human speaker (if analyzed)
pub human_state: Option<ComfortLevel>,
/// Comfort level of Aye's output
pub aye_state: ComfortLevel,
/// Overall audio/structure quality (0..1)
pub quality_score: f32,
/// Number of utterances analyzed
pub utterance_count: usize,
/// Session duration in seconds
pub duration_seconds: f32,
/// Mean prosody statistics
pub mean_prosody: MarineProsodyVector,
/// Jitter trend (positive = rising, negative = falling)
pub jitter_trend: f32,
/// Energy trend (positive = rising, negative = falling)
pub energy_trend: f32,
}
impl ConversationAffectSummary {
/// Generate Aye's self-assessment message
pub fn aye_assessment(&self) -> String {
let emoji = self.aye_state.emoji();
let desc = self.aye_state.description();
let quality_desc = if self.quality_score > 0.8 {
"very good"
} else if self.quality_score > 0.6 {
"good"
} else if self.quality_score > 0.4 {
"moderate"
} else {
"low"
};
format!(
"{} Aye thinks this conversation felt {}. Audio quality was {} ({:.0}%). \
{} {} utterances over {:.1} seconds.",
emoji,
desc,
quality_desc,
self.quality_score * 100.0,
if self.jitter_trend > 0.05 {
"Tension seemed to increase."
} else if self.jitter_trend < -0.05 {
"Tension seemed to decrease."
} else {
"Emotional tone stayed consistent."
},
self.utterance_count,
self.duration_seconds
)
}
/// Generate prompt for asking human for feedback
pub fn feedback_prompt(&self) -> String {
format!(
"Aye would like to improve. How did this conversation make you feel?\n\
A) Uneasy or tense π\n\
B) Neutral or okay π\n\
C) Comfortable and positive π\n\n\
Aye's self-assessment: {} ({})",
self.aye_state.emoji(),
self.aye_state.description()
)
}
}
/// Conversation affect analyzer
///
/// Collects prosody vectors over a conversation and computes
/// session-level emotional state.
pub struct ConversationAffectAnalyzer {
/// Collected prosody vectors
utterances: Vec<MarineProsodyVector>,
/// Total audio duration
total_duration_seconds: f32,
/// Configuration thresholds
config: AffectAnalyzerConfig,
}
/// Configuration for affect classification
#[derive(Debug, Clone, Copy)]
pub struct AffectAnalyzerConfig {
/// Threshold for "high" combined jitter
pub high_jitter_threshold: f32,
/// Threshold for "rising" jitter trend
pub rising_jitter_threshold: f32,
/// Threshold for "high" energy (happy indicator)
pub high_energy_threshold: f32,
}
impl Default for AffectAnalyzerConfig {
fn default() -> Self {
Self {
high_jitter_threshold: 0.4,
rising_jitter_threshold: 0.1,
high_energy_threshold: 0.5,
}
}
}
impl ConversationAffectAnalyzer {
/// Create new analyzer with default config
pub fn new() -> Self {
Self {
utterances: Vec::new(),
total_duration_seconds: 0.0,
config: AffectAnalyzerConfig::default(),
}
}
/// Create with custom configuration
pub fn with_config(config: AffectAnalyzerConfig) -> Self {
Self {
utterances: Vec::new(),
total_duration_seconds: 0.0,
config,
}
}
/// Add an utterance's prosody to the conversation
pub fn add_utterance(&mut self, prosody: MarineProsodyVector, duration_seconds: f32) {
self.utterances.push(prosody);
self.total_duration_seconds += duration_seconds;
}
/// Reset analyzer for new conversation
pub fn reset(&mut self) {
self.utterances.clear();
self.total_duration_seconds = 0.0;
}
/// Analyze conversation and produce affect summary
pub fn analyze(&self) -> Option<ConversationAffectSummary> {
if self.utterances.is_empty() {
return None;
}
let n = self.utterances.len() as f32;
// Calculate mean prosody
let mut mean_prosody = MarineProsodyVector::zeros();
for p in &self.utterances {
mean_prosody.jp_mean += p.jp_mean;
mean_prosody.jp_std += p.jp_std;
mean_prosody.ja_mean += p.ja_mean;
mean_prosody.ja_std += p.ja_std;
mean_prosody.h_mean += p.h_mean;
mean_prosody.s_mean += p.s_mean;
mean_prosody.peak_density += p.peak_density;
mean_prosody.energy_mean += p.energy_mean;
}
mean_prosody.jp_mean /= n;
mean_prosody.jp_std /= n;
mean_prosody.ja_mean /= n;
mean_prosody.ja_std /= n;
mean_prosody.h_mean /= n;
mean_prosody.s_mean /= n;
mean_prosody.peak_density /= n;
mean_prosody.energy_mean /= n;
// Calculate trends (first vs last)
let jitter_trend = if self.utterances.len() >= 2 {
let first = self.utterances.first().unwrap().combined_jitter();
let last = self.utterances.last().unwrap().combined_jitter();
last - first
} else {
0.0
};
let energy_trend = if self.utterances.len() >= 2 {
let first = self.utterances.first().unwrap().energy_mean;
let last = self.utterances.last().unwrap().energy_mean;
last - first
} else {
0.0
};
// Classify comfort level
let aye_state = self.classify_comfort(
mean_prosody.combined_jitter(),
jitter_trend,
mean_prosody.energy_mean,
);
let quality_score = mean_prosody.s_mean;
Some(ConversationAffectSummary {
human_state: None, // Would require analyzing human audio
aye_state,
quality_score,
utterance_count: self.utterances.len(),
duration_seconds: self.total_duration_seconds,
mean_prosody,
jitter_trend,
energy_trend,
})
}
/// Classify comfort level based on jitter and energy patterns
fn classify_comfort(
&self,
mean_jitter: f32,
trend_jitter: f32,
mean_energy: f32,
) -> ComfortLevel {
let high_jitter = mean_jitter > self.config.high_jitter_threshold;
let rising_jitter = trend_jitter > self.config.rising_jitter_threshold;
if high_jitter && rising_jitter {
// Jitter is high AND getting worse = tension/unease
ComfortLevel::Uneasy
} else if mean_energy > self.config.high_energy_threshold && !high_jitter {
// Good energy with stable jitter = positive/happy
ComfortLevel::Happy
} else {
// In-between: stable but low energy, or slightly jittery but stable
ComfortLevel::Neutral
}
}
/// Get number of utterances collected
pub fn utterance_count(&self) -> usize {
self.utterances.len()
}
/// Get total duration
pub fn total_duration(&self) -> f32 {
self.total_duration_seconds
}
}
impl Default for ConversationAffectAnalyzer {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_comfort_level_descriptions() {
assert_eq!(ComfortLevel::Uneasy.emoji(), "π");
assert_eq!(ComfortLevel::Neutral.emoji(), "π");
assert_eq!(ComfortLevel::Happy.emoji(), "π");
assert_eq!(ComfortLevel::Uneasy.score(), -1);
assert_eq!(ComfortLevel::Neutral.score(), 0);
assert_eq!(ComfortLevel::Happy.score(), 1);
}
#[test]
fn test_analyzer_empty_conversation() {
let analyzer = ConversationAffectAnalyzer::new();
assert!(analyzer.analyze().is_none());
}
#[test]
fn test_analyzer_single_utterance() {
let mut analyzer = ConversationAffectAnalyzer::new();
let prosody = MarineProsodyVector {
jp_mean: 0.1,
jp_std: 0.05,
ja_mean: 0.1,
ja_std: 0.05,
h_mean: 1.0,
s_mean: 0.8,
peak_density: 50.0,
energy_mean: 0.6,
};
analyzer.add_utterance(prosody, 2.0);
let summary = analyzer.analyze().unwrap();
assert_eq!(summary.utterance_count, 1);
assert_eq!(summary.duration_seconds, 2.0);
}
#[test]
fn test_uneasy_classification() {
let mut analyzer = ConversationAffectAnalyzer::new();
// First utterance: moderate jitter
analyzer.add_utterance(
MarineProsodyVector {
jp_mean: 0.3,
jp_std: 0.1,
ja_mean: 0.3,
ja_std: 0.1,
h_mean: 1.0,
s_mean: 0.5,
peak_density: 50.0,
energy_mean: 0.3,
},
1.0,
);
// Second utterance: HIGH jitter (rising trend)
analyzer.add_utterance(
MarineProsodyVector {
jp_mean: 0.6,
jp_std: 0.2,
ja_mean: 0.5,
ja_std: 0.2,
h_mean: 0.8,
s_mean: 0.3,
peak_density: 60.0,
energy_mean: 0.4,
},
1.0,
);
let summary = analyzer.analyze().unwrap();
assert_eq!(summary.aye_state, ComfortLevel::Uneasy);
assert!(summary.jitter_trend > 0.0); // Rising jitter
}
#[test]
fn test_happy_classification() {
let mut analyzer = ConversationAffectAnalyzer::new();
// High energy, low jitter = happy
analyzer.add_utterance(
MarineProsodyVector {
jp_mean: 0.1,
jp_std: 0.05,
ja_mean: 0.1,
ja_std: 0.05,
h_mean: 1.0,
s_mean: 0.9,
peak_density: 80.0,
energy_mean: 0.7,
},
2.0,
);
let summary = analyzer.analyze().unwrap();
assert_eq!(summary.aye_state, ComfortLevel::Happy);
}
#[test]
fn test_neutral_classification() {
let mut analyzer = ConversationAffectAnalyzer::new();
// Low energy, moderate jitter = neutral
analyzer.add_utterance(
MarineProsodyVector {
jp_mean: 0.2,
jp_std: 0.1,
ja_mean: 0.2,
ja_std: 0.1,
h_mean: 1.0,
s_mean: 0.7,
peak_density: 40.0,
energy_mean: 0.3,
},
1.5,
);
let summary = analyzer.analyze().unwrap();
assert_eq!(summary.aye_state, ComfortLevel::Neutral);
}
#[test]
fn test_aye_assessment_message() {
let summary = ConversationAffectSummary {
human_state: None,
aye_state: ComfortLevel::Happy,
quality_score: 0.85,
utterance_count: 5,
duration_seconds: 30.0,
mean_prosody: MarineProsodyVector::zeros(),
jitter_trend: -0.1,
energy_trend: 0.2,
};
let message = summary.aye_assessment();
assert!(message.contains("π"));
assert!(message.contains("comfortable"));
assert!(message.contains("85%"));
assert!(message.contains("5 utterances"));
}
}
|