| from geopy.distance import geodesic | |
| import re | |
| def find_first_digit(s): | |
| for char in s: | |
| if char.isdigit(): | |
| return char | |
| return None | |
| def find_option_number(response, label, error_writer): | |
| predicted = find_first_digit(response) | |
| if predicted!=None: | |
| if predicted==str(label)[0]: | |
| return 1 | |
| else: | |
| return 0 | |
| else: | |
| error_writer.write("### response:{}, answer:{} ###\n".format(response, label)) | |
| return None | |
| def trajectory_classification(response, label, error_writer): | |
| pattern = r'car|bike|bicycle|pedestrian' | |
| mapping = {'car': 1, 'bike': 2, 'bicycle':2, 'pedestrian': 3} | |
| match = re.search(pattern, response, flags=re.I) | |
| if match: | |
| predicted = match.group() | |
| predicted = mapping[predicted] | |
| if predicted==label: | |
| return 1 | |
| else: | |
| return 0 | |
| else: | |
| error_writer.write("### response:{}, ### answer:{} ###\n".format(response, label)) | |
| return None | |
| def find_option_number_for_cot(response, label, error_writer): | |
| pattern = r'\((\d+)\)' | |
| match = re.search(pattern, response, flags=re.I) | |
| if match: | |
| predicted = match.group(1) | |
| if predicted==str(label)[0]: | |
| return 1 | |
| else: | |
| return 0 | |
| else: | |
| error_writer.write("### response:{}, ### answer:{} ###\n".format(response, label)) | |
| return None | |
| def yes_or_no(response, label, error_writer): | |
| pattern = r'Yes|No' | |
| match = re.search(pattern, response, flags=re.I) | |
| if match: | |
| predicted = match.group() | |
| predicted = predicted.title() | |
| if predicted==label: | |
| return 1 | |
| else: | |
| return 0 | |
| else: | |
| error_writer.write("### response:{}, ### answer:{} ###\n".format(response, label)) | |
| return None | |
| def anomaly_detection(response, label, error_writer): | |
| pattern = r'Normal|Anomalous|Anomaly|Abnormal' | |
| match = re.search(pattern, response, flags=re.I) | |
| if match: | |
| predicted = match.group() | |
| predicted = predicted.title() | |
| if predicted=="Abnormal" or predicted=="Anomaly": | |
| predicted=="Anomalous" | |
| if predicted==label: | |
| return 1 | |
| else: | |
| return 0 | |
| else: | |
| error_writer.write("### response:{}, ### answer:{} ###\n".format(response, label)) | |
| return None | |
| def extract_floats(input_string): | |
| floats = re.findall(r'\d+\.\d+', input_string) | |
| if len(floats) >= 2: | |
| return float(floats[0]), float(floats[1]) | |
| else: | |
| return None | |
| def calculate_distance(coord1, coord2): | |
| distance = geodesic([coord2[1], coord2[0]], [coord1[1], coord1[0]]).meters | |
| return distance | |
| def trajectory_prediction(response, label, error_writer): | |
| lon, lat = extract_floats(response) | |
| distance = calculate_distance([lon, lat], label) | |
| if distance>=100000: | |
| error_writer.write("### response:{}, answer:{} ###\n".format(response, label)) | |
| return None | |
| return distance | |