|
|
"""Generation script for text-conditional diffusion model.""" |
|
|
import torch |
|
|
import argparse |
|
|
import os |
|
|
from PIL import Image |
|
|
import torchvision.transforms as transforms |
|
|
|
|
|
import config |
|
|
from model import TextConditionedUNet |
|
|
from scheduler import SimpleDDPMScheduler |
|
|
from text_encoder import CLIPTextEncoder |
|
|
|
|
|
|
|
|
def tensor_to_image(tensor): |
|
|
"""Convert tensor to PIL Image.""" |
|
|
|
|
|
tensor = (tensor + 1.0) / 2.0 |
|
|
tensor = torch.clamp(tensor, 0, 1) |
|
|
|
|
|
|
|
|
transform = transforms.ToPILImage() |
|
|
return transform(tensor.squeeze(0)) |
|
|
|
|
|
|
|
|
def generate_samples(checkpoint_path, prompt="a drawing of a cat", num_samples=4, guidance_scale=3.0, device='cuda'): |
|
|
"""Generate samples using text prompts with classifier-free guidance. |
|
|
|
|
|
Args: |
|
|
checkpoint_path: Path to model checkpoint |
|
|
prompt: Text prompt for generation |
|
|
num_samples: Number of samples to generate |
|
|
guidance_scale: CFG scale (1.0 = no guidance, 3.0-7.0 typical, higher = stronger) |
|
|
device: Device to use |
|
|
""" |
|
|
print(f"π¨ Generating {num_samples} samples with prompt: '{prompt}'") |
|
|
print(f"π Guidance scale: {guidance_scale}") |
|
|
|
|
|
|
|
|
if not os.path.exists(checkpoint_path): |
|
|
print(f"β Checkpoint not found: {checkpoint_path}") |
|
|
return |
|
|
|
|
|
print(f"π Loading checkpoint: {checkpoint_path}") |
|
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
|
|
|
|
|
|
|
ckpt_config = checkpoint.get('config', {}) |
|
|
text_dim = ckpt_config.get('text_dim', config.TEXT_DIM) |
|
|
clip_model = ckpt_config.get('clip_model', config.CLIP_MODEL) |
|
|
|
|
|
|
|
|
model = TextConditionedUNet(text_dim=text_dim).to(device) |
|
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
model.eval() |
|
|
|
|
|
|
|
|
text_encoder = CLIPTextEncoder(model_name=clip_model, freeze=True).to(device) |
|
|
text_encoder.eval() |
|
|
|
|
|
|
|
|
scheduler = SimpleDDPMScheduler(config.TIMESTEPS) |
|
|
|
|
|
print(f"π Model loaded (text_dim={text_dim})") |
|
|
print(f"π CLIP model: {clip_model}") |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
text_embedding = text_encoder(prompt) |
|
|
|
|
|
text_embeddings = text_embedding.repeat(num_samples, 1) |
|
|
|
|
|
|
|
|
os.makedirs("outputs", exist_ok=True) |
|
|
|
|
|
|
|
|
print(f"π¨ Generating {num_samples} samples...") |
|
|
with torch.no_grad(): |
|
|
|
|
|
shape = (num_samples, 1, config.IMAGE_SIZE, config.IMAGE_SIZE) |
|
|
samples = scheduler.sample_text(model, shape, text_embeddings, device, guidance_scale) |
|
|
|
|
|
|
|
|
for i in range(num_samples): |
|
|
|
|
|
safe_prompt = "".join(c if c.isalnum() or c in " _-" else "" for c in prompt) |
|
|
safe_prompt = safe_prompt.replace(" ", "_")[:50] |
|
|
sample_name = f"text_sample_{i+1}_{safe_prompt}" |
|
|
|
|
|
|
|
|
img = tensor_to_image(samples[i]) |
|
|
img_path = f"outputs/{sample_name}.png" |
|
|
img.save(img_path) |
|
|
print(f"πΎ Saved: {img_path}") |
|
|
|
|
|
print("β
Generation complete!") |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description='Generate samples from text-conditional diffusion model') |
|
|
parser.add_argument('--checkpoint', type=str, required=True, |
|
|
help='Path to checkpoint file') |
|
|
parser.add_argument('--prompt', type=str, default="a drawing of a cat and dog", |
|
|
help='Text prompt for generation') |
|
|
parser.add_argument('--num-samples', type=int, default=4, |
|
|
help='Number of samples to generate (default: 4)') |
|
|
parser.add_argument('--guidance-scale', type=float, default=config.CFG_GUIDANCE_SCALE, |
|
|
help=f'Classifier-free guidance scale (1.0 = no guidance, 3.0-7.0 typical, default: {config.CFG_GUIDANCE_SCALE})') |
|
|
parser.add_argument('--device', type=str, default='cuda', |
|
|
help='Device to use (default: cuda)') |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
if args.device == 'cuda' and not torch.cuda.is_available(): |
|
|
print("β οΈ CUDA not available, using CPU") |
|
|
args.device = 'cpu' |
|
|
|
|
|
generate_samples(args.checkpoint, args.prompt, args.num_samples, args.guidance_scale, args.device) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |