Upload model.py with huggingface_hub
Browse files
model.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Text-conditional U-Net for diffusion."""
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import math
|
| 5 |
+
import config
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class TimeEmbedding(nn.Module):
|
| 9 |
+
"""Sinusoidal time embedding."""
|
| 10 |
+
|
| 11 |
+
def __init__(self, dim):
|
| 12 |
+
super().__init__()
|
| 13 |
+
self.dim = dim
|
| 14 |
+
|
| 15 |
+
def forward(self, t):
|
| 16 |
+
half_dim = self.dim // 2
|
| 17 |
+
emb = math.log(10000) / (half_dim - 1)
|
| 18 |
+
emb = torch.exp(torch.arange(half_dim, device=t.device) * -emb)
|
| 19 |
+
emb = t[:, None] * emb[None, :]
|
| 20 |
+
return torch.cat([emb.sin(), emb.cos()], dim=1)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ResBlock(nn.Module):
|
| 24 |
+
"""Residual block with time and text conditioning."""
|
| 25 |
+
|
| 26 |
+
def __init__(self, in_ch, out_ch, time_dim, text_dim=None):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.time_mlp = nn.Linear(time_dim, out_ch)
|
| 29 |
+
self.text_mlp = nn.Linear(text_dim, out_ch) if text_dim else None
|
| 30 |
+
|
| 31 |
+
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, padding=1)
|
| 32 |
+
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, padding=1)
|
| 33 |
+
self.norm1 = nn.GroupNorm(min(8, in_ch), in_ch)
|
| 34 |
+
self.norm2 = nn.GroupNorm(min(8, out_ch), out_ch)
|
| 35 |
+
self.act = nn.SiLU()
|
| 36 |
+
|
| 37 |
+
self.skip = nn.Conv2d(in_ch, out_ch, 1) if in_ch != out_ch else nn.Identity()
|
| 38 |
+
|
| 39 |
+
def forward(self, x, t_emb, text_emb=None):
|
| 40 |
+
h = self.act(self.norm1(x))
|
| 41 |
+
h = self.conv1(h)
|
| 42 |
+
|
| 43 |
+
# Add time embedding
|
| 44 |
+
h = h + self.time_mlp(t_emb)[:, :, None, None]
|
| 45 |
+
|
| 46 |
+
# Add text embedding
|
| 47 |
+
if self.text_mlp is not None and text_emb is not None:
|
| 48 |
+
h = h + self.text_mlp(text_emb)[:, :, None, None]
|
| 49 |
+
|
| 50 |
+
h = self.act(self.norm2(h))
|
| 51 |
+
h = self.conv2(h)
|
| 52 |
+
|
| 53 |
+
return h + self.skip(x)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class TextConditionedUNet(nn.Module):
|
| 57 |
+
"""U-Net with CLIP text conditioning."""
|
| 58 |
+
|
| 59 |
+
def __init__(self, text_dim=512):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.text_dim = text_dim
|
| 62 |
+
|
| 63 |
+
self.time_emb = TimeEmbedding(config.TIME_DIM)
|
| 64 |
+
self.time_mlp = nn.Sequential(
|
| 65 |
+
nn.Linear(config.TIME_DIM, config.TIME_DIM),
|
| 66 |
+
nn.SiLU(),
|
| 67 |
+
nn.Linear(config.TIME_DIM, config.TIME_DIM)
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
self.text_proj = nn.Sequential(
|
| 71 |
+
nn.Linear(text_dim, text_dim),
|
| 72 |
+
nn.SiLU(),
|
| 73 |
+
nn.Linear(text_dim, text_dim)
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Down path
|
| 77 |
+
self.down1 = ResBlock(1, config.CHANNELS, config.TIME_DIM, text_dim)
|
| 78 |
+
self.down2 = ResBlock(config.CHANNELS, config.CHANNELS * 2, config.TIME_DIM, text_dim)
|
| 79 |
+
self.down3 = ResBlock(config.CHANNELS * 2, config.CHANNELS * 4, config.TIME_DIM, text_dim)
|
| 80 |
+
|
| 81 |
+
# Middle
|
| 82 |
+
self.mid = ResBlock(config.CHANNELS * 4, config.CHANNELS * 4, config.TIME_DIM, text_dim)
|
| 83 |
+
|
| 84 |
+
# Up path
|
| 85 |
+
self.up3 = ResBlock(config.CHANNELS * 8, config.CHANNELS * 2, config.TIME_DIM, text_dim)
|
| 86 |
+
self.up2 = ResBlock(config.CHANNELS * 4, config.CHANNELS, config.TIME_DIM, text_dim)
|
| 87 |
+
self.up1 = ResBlock(config.CHANNELS * 2, config.CHANNELS, config.TIME_DIM, text_dim)
|
| 88 |
+
|
| 89 |
+
# Output
|
| 90 |
+
self.out = nn.Conv2d(config.CHANNELS, 1, 1)
|
| 91 |
+
|
| 92 |
+
# Pooling/Upsampling
|
| 93 |
+
self.pool = nn.MaxPool2d(2)
|
| 94 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
| 95 |
+
|
| 96 |
+
def forward(self, x, t, text_emb):
|
| 97 |
+
"""
|
| 98 |
+
Args:
|
| 99 |
+
x: [B, 1, H, W] noisy images
|
| 100 |
+
t: [B] timesteps
|
| 101 |
+
text_emb: [B, text_dim] CLIP text embeddings
|
| 102 |
+
"""
|
| 103 |
+
# Embeddings
|
| 104 |
+
t_emb = self.time_mlp(self.time_emb(t))
|
| 105 |
+
text_emb = self.text_proj(text_emb)
|
| 106 |
+
|
| 107 |
+
# Down
|
| 108 |
+
h1 = self.down1(x, t_emb, text_emb)
|
| 109 |
+
h2 = self.down2(self.pool(h1), t_emb, text_emb)
|
| 110 |
+
h3 = self.down3(self.pool(h2), t_emb, text_emb)
|
| 111 |
+
|
| 112 |
+
# Middle
|
| 113 |
+
h = self.mid(self.pool(h3), t_emb, text_emb)
|
| 114 |
+
|
| 115 |
+
# Up
|
| 116 |
+
h = self.up3(torch.cat([self.upsample(h), h3], dim=1), t_emb, text_emb)
|
| 117 |
+
h = self.up2(torch.cat([self.upsample(h), h2], dim=1), t_emb, text_emb)
|
| 118 |
+
h = self.up1(torch.cat([self.upsample(h), h1], dim=1), t_emb, text_emb)
|
| 119 |
+
|
| 120 |
+
return self.out(h)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
# Test model
|
| 125 |
+
print("Testing Text-Conditioned U-Net...")
|
| 126 |
+
model = TextConditionedUNet(text_dim=512)
|
| 127 |
+
|
| 128 |
+
# Test forward pass
|
| 129 |
+
batch_size = 2
|
| 130 |
+
x = torch.randn(batch_size, 1, 64, 64)
|
| 131 |
+
t = torch.randint(0, 1000, (batch_size,))
|
| 132 |
+
text_emb = torch.randn(batch_size, 512)
|
| 133 |
+
|
| 134 |
+
out = model(x, t, text_emb)
|
| 135 |
+
print(f"Input shape: {x.shape}")
|
| 136 |
+
print(f"Output shape: {out.shape}")
|
| 137 |
+
print(f"✅ Model test passed!")
|