achyutarajaram's picture
Update gpt.py
5cd6989 verified
"""
Full definition of a GPT Language Model, all of it in this single file.
References:
1) the official GPT-2 TensorFlow implementation released by OpenAI:
https://github.com/openai/gpt-2/blob/master/src/model.py
2) huggingface/transformers PyTorch implementation:
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
"""
import math
from dataclasses import dataclass
from typing import Literal
import torch
import torch.nn as nn
import torch.nn.functional as F
# has to be down here to avoid loading cuda too early
from .hook_utils import (
hook_namespace,
hook_save,
torch_recompute_preserving_hook_context,
)
def sample_top_k(*, n: int, k: int, shape: tuple[int, ...]):
"""Fallback sampler used only when sparse kernels are enabled."""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
return torch.randn(shape, device=device, dtype=torch.float32)
class AbsTopK(nn.Module):
def __init__(self, k):
super().__init__()
self.k = k
def forward(self, x):
vals, inds = torch.topk(x.abs(), self.k, dim=-1, sorted=False)
ret = torch.zeros_like(x)
ret.scatter_(-1, inds, x.gather(-1, inds))
return ret
def barrier():
# stub
pass
class LayerNorm(nn.Module):
"""LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False"""
def __init__(self, ndim, bias):
super().__init__()
self.weight = nn.Parameter(torch.ones(ndim))
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
def forward(self, input):
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.d_model % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = config.Linear(
config.d_model, 3 * config.d_head * config.n_head, bias=config.bias
)
# output projection
self.c_proj = config.Linear(config.d_head * config.n_head, config.d_model, bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.d_head = config.d_head
self.d_model = config.d_model
self.dropout = config.dropout
self.config = config
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") and config.flash
if self.flash:
self.attn_imp = (
SDPAWithSink(config.n_head) if config.sink else F.scaled_dot_product_attention
)
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x):
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (d_model)
x = self.config.maybe_activation_sparsity(x, "attn_in")
x = hook_save("act_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in input"
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_head * self.d_head, dim=2)
k = self.config.maybe_activation_sparsity(k, "attn_k")
q = self.config.maybe_activation_sparsity(q, "attn_q")
v = self.config.maybe_activation_sparsity(v, "attn_v")
k = hook_save("k", k) # (B, T, n_head * d_head)
q = hook_save("q", q) # (B, T, n_head * d_head)
v = hook_save("v", v) # (B, T, n_head * d_head)
k = k.view(B, T, self.n_head, self.d_head).transpose(1, 2) # (B, nh, T, hs)
q = q.view(B, T, self.n_head, self.d_head).transpose(1, 2) # (B, nh, T, hs)
v = v.view(B, T, self.n_head, self.d_head).transpose(1, 2) # (B, nh, T, hs)
if self.config.debug_nans:
assert q.isfinite().all(), "nan in query"
assert k.isfinite().all(), "nan in key"
assert v.isfinite().all(), "nan in value"
attention_scale = 1.0 / math.sqrt(k.size(-1))
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
if self.flash:
# efficient attention using Flash Attention CUDA kernels
y = self.attn_imp(
q,
k,
v,
dropout_p=self.dropout if self.training else 0,
is_causal=True,
scale=attention_scale,
)
else:
# manual implementation of attention
att = (q @ k.transpose(-2, -1)) * attention_scale
att = att.masked_fill(
self.bias[:, :, :T, :T] == 0, torch.finfo(att.dtype).min
) # float("-inf"))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
if self.config.debug_nans:
assert y.isfinite().all(), "nan in attention output"
y = (
y.transpose(1, 2).contiguous().view(B, T, self.n_head * self.d_head)
) # re-assemble all head outputs side by side
# y = self.config.maybe_activation_sparsity(y)
y = hook_save("y", y) # (B, T, n_head * d_head)
# output projection
y = self.resid_dropout(self.c_proj(y))
if self.config.debug_nans:
assert y.isfinite().all(), "nan in attention output 2"
y = self.config.maybe_activation_sparsity(y, "attn_out")
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.c_fc = config.Linear(config.d_model, config.d_mlp, bias=config.bias)
self.act_fn = {
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}[config.activation_type]
self.c_proj = config.Linear(config.d_mlp, config.d_model, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.config.maybe_activation_sparsity(x, "mlp_in")
x = hook_save("act_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp input"
x = self.c_fc(x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp after c_fc"
x = self.act_fn(x)
x = self.config.maybe_activation_sparsity(x, "mlp_neuron")
x = hook_save("post_act", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp after act"
x = self.c_proj(x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in mlp after c_proj"
x = self.dropout(x)
x = self.config.maybe_activation_sparsity(x, "mlp_out")
return x
class SDPAWithSink(nn.Module):
"""
Adds a learnable denominator-only term ("attention sink") to SDPA by
concatenating a dummy KV slot whose logit is b and whose V is zero.
"""
def __init__(self, num_heads: int, init_logit: float = 0.0):
super().__init__()
shape = (num_heads,)
self.sink_logit = nn.Parameter(torch.full(shape, init_logit))
def forward(
self,
q: torch.Tensor, # (B, H, Lq, D)
k: torch.Tensor, # (B, H, Lk, D)
v: torch.Tensor, # (B, H, Lk, Dv)
*,
dropout_p: float = 0.0,
is_causal: bool = False,
scale: float | None = None,
) -> torch.Tensor:
B, H, Lq, D = q.shape
_, _, Lk, _ = k.shape
Dv = v.size(-1)
# 1) Prepend a dummy KV slot (always visible)
k_sink = torch.zeros((B, H, 1, D), dtype=q.dtype, device=q.device)
v_sink = torch.zeros((B, H, 1, Dv), dtype=v.dtype, device=v.device)
k_aug = torch.cat([k_sink, k], dim=2) # (B,H,Lk+1,D)
v_aug = torch.cat([v_sink, v], dim=2) # (B,H,Lk+1,Dv)
# 2) Build shifted causal allow-mask over keys (columns 1..), always allow col 0 (sink)
# allow: 1 where attending is allowed, 0 where disallowed
# For real keys: allow[i, j+1] = 1 if j <= i else 0 (lower-triangular)
allow = torch.zeros((Lq, Lk + 1), dtype=torch.bool, device=q.device)
allow[:, 0] = True # sink column always on
# lower-triangular for real keys shifted by +1
real = torch.ones((Lq, Lk), dtype=torch.bool, device=q.device).tril()
allow[:, 1:] = real
# Broadcast to (B,H,Lq,Lk+1)
allow = allow.view(1, 1, Lq, Lk + 1).expand(B, H, Lq, Lk + 1)
# 3) Turn it into an additive mask. 0 for allowed, -inf for disallowed
neg_inf = torch.finfo(q.dtype).min
base_mask = torch.where(
allow,
torch.zeros((), dtype=q.dtype, device=q.device),
torch.full((), neg_inf, dtype=q.dtype, device=q.device),
) # (B,H,Lq,Lk+1)
# 4) Add learnable sink bias b to column 0 (per head or shared)
if self.sink_logit.numel() == H:
b = self.sink_logit.to(dtype=q.dtype, device=q.device).view(1, H, 1, 1) # (1,H,1,1)
else:
b = self.sink_logit.to(dtype=q.dtype, device=q.device).view(1, 1, 1, 1) # (1,1,1,1)
sink_bias_mask = torch.zeros((1, 1, 1, Lk + 1), dtype=q.dtype, device=q.device)
sink_bias_mask[..., 0] = 1.0
attn_mask = base_mask + sink_bias_mask * b # (B,H,Lq,Lk+1)
# 5) SDPA with our custom mask; keep is_causal=False to avoid double-masking
out = F.scaled_dot_product_attention(
q,
k_aug,
v_aug,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=False, # important
scale=scale,
)
return out
class Block(nn.Module):
# block exactly satisfies the invariant that forward = forward_mlp_block . forward_attn_block
def __init__(self, config):
super().__init__()
self.config = config
self.ln_1 = (
nn.RMSNorm(config.d_model)
if config.rms_norm
else LayerNorm(config.d_model, bias=config.ln_bias)
)
self.attn = CausalSelfAttention(config)
self.ln_2 = (
nn.RMSNorm(config.d_model)
if config.rms_norm
else LayerNorm(config.d_model, bias=config.ln_bias)
)
self.mlp = MLP(config)
def forward_attn_block(self, x):
x = hook_save("resid_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in blk input"
with hook_namespace("attn"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x: self.attn(self.ln_1(x)), x, use_reentrant=False
),
)
else:
x = x + hook_save("resid_delta", self.attn(self.ln_1(x)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_attn")
return x
def forward_mlp_block(self, x):
x = hook_save("resid_mid", x)
with hook_namespace("mlp"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x: self.mlp(self.ln_2(x)), x, use_reentrant=False
),
)
else:
x = x + hook_save("resid_delta", self.mlp(self.ln_2(x)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_mlp")
return x
def forward(self, x):
x = self.forward_attn_block(x)
x = self.forward_mlp_block(x)
return x
class CausalSelfAttentionCatPosEmb(CausalSelfAttention):
def __init__(self, config):
# initialize base attention with standard shapes, we'll override projections
super().__init__(config)
assert config.d_model % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = config.Linear(
config.d_model_in, 3 * config.d_head * config.n_head, bias=config.bias
)
# output projection
self.c_proj = config.Linear(config.d_head * config.n_head, config.d_model, bias=config.bias)
# regularization
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.d_head = config.d_head
self.d_model_in = config.d_model_in
self.d_model = config.d_model
self.dropout = config.dropout
self.config = config
# flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention") and config.flash
if not self.flash:
print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"bias",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
)
def forward(self, x, pos_emb_to_cat):
# Broadcast pos emb over batch if provided as shape [1, T, C]
if pos_emb_to_cat is not None and pos_emb_to_cat.size(0) == 1 and x.size(0) != 1:
pos_emb_to_cat = pos_emb_to_cat.expand(x.size(0), -1, -1)
x = torch.cat([x, pos_emb_to_cat], dim=-1)
return super().forward(x)
class MLPCatPosEmb(MLP):
def __init__(self, config):
# initialize base MLP, we'll override the projections to match cat shapes
super().__init__(config)
self.config = config
self.c_fc = config.Linear(config.d_model_in, config.d_mlp, bias=config.bias)
self.act_fn = {
"gelu": nn.GELU(),
"relu": nn.ReLU(),
}[config.activation_type]
self.c_proj = config.Linear(config.d_mlp, config.d_model, bias=config.bias)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x, pos_emb_to_cat):
# Broadcast pos emb over batch if provided as shape [1, T, C]
if pos_emb_to_cat is not None and pos_emb_to_cat.size(0) == 1 and x.size(0) != 1:
pos_emb_to_cat = pos_emb_to_cat.expand(x.size(0), -1, -1)
x = torch.cat([x, pos_emb_to_cat], dim=-1)
x = super().forward(x)
return x
class BlockCatPosEmb(Block):
# block exactly satisfies the invariant that forward = forward_mlp_block . forward_attn_block
def __init__(self, config):
# initialize base Block to get ln_1/ln_2 and other invariants
super().__init__(config)
self.ln_p1 = (
nn.RMSNorm(config.d_pos_emb)
if config.rms_norm
else LayerNorm(config.d_pos_emb, bias=config.ln_bias)
)
self.ln_p2 = (
nn.RMSNorm(config.d_pos_emb)
if config.rms_norm
else LayerNorm(config.d_pos_emb, bias=config.ln_bias)
)
self.attn = CausalSelfAttentionCatPosEmb(config)
self.mlp = MLPCatPosEmb(config)
def forward_attn_block(self, x, p):
x = hook_save("resid_in", x)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in blk input"
with hook_namespace("attn"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x, p: self.attn(self.ln_1(x), self.ln_p1(p)),
x,
p,
use_reentrant=False,
),
)
else:
x = x + hook_save("resid_delta", self.attn(self.ln_1(x), self.ln_p1(p)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_attn")
return x
def forward_mlp_block(self, x, p):
x = hook_save("resid_mid", x)
with hook_namespace("mlp"):
if self.config.grad_checkpointing:
x = x + hook_save(
"resid_delta",
torch_recompute_preserving_hook_context(
lambda x, p: self.mlp(self.ln_2(x), self.ln_p2(p)),
x,
p,
use_reentrant=False,
),
)
else:
x = x + hook_save("resid_delta", self.mlp(self.ln_2(x), self.ln_p2(p)))
if self.config.residual_activation_type == "relu":
x = torch.relu(x)
x = self.config.maybe_activation_sparsity(x, "resid_post_mlp")
return x
def forward(self, x, pos_emb_to_cat):
x = self.forward_attn_block(x, pos_emb_to_cat)
x = self.forward_mlp_block(x, pos_emb_to_cat)
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency # TODO: FLAG FOR ACHY
n_layer: int = 12
n_head: int = 12
d_head: int | None = None # defaults to d_model // n_head
d_model: int = 768
dropout: float = 0.0
bias: bool = (
True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
)
ln_bias: bool = (
True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
)
rms_norm: bool = False # use RMSNorm instead of LayerNorm
residual_activation_type: Literal["identity", "relu"] = "identity"
activation_type: Literal["gelu", "relu"] = "gelu"
afrac: float | None = None # fraction of activations to keep
afrac_loctypes: str = "attn_in,attn_out,mlp_in,mlp_out"
debug_nans: bool = False
tied_unembed: bool = True
tokenizer_name: str = "tinypython_2k"
grad_checkpointing: bool = True
d_mlp: int | None = None # multiplier for MLP hidden layer size
enable_bigram_table: bool = False
learnable_bigram_table: bool = False
d_pos_emb: int | None = None
dropout_cat_pos_emb: bool = False
sinusoidal_cat_pos_emb: bool = False
enable_sparse_kernels: bool = False
flash: bool = True
sink: bool = False
@property
def cat_pos_emb(self):
return self.d_pos_emb is not None
@property
def d_model_in(self):
return self.d_model + self.d_pos_emb if self.cat_pos_emb else self.d_model
def __post_init__(self):
assert self.d_model % self.n_head == 0
assert self.residual_activation_type in ["identity", "relu"]
assert self.activation_type in ["gelu", "relu"]
if self.d_mlp is None:
self.d_mlp = 4 * self.d_model
if self.d_head is None:
self.d_head = self.d_model // self.n_head
@property
def Linear(self):
return nn.Linear
def maybe_activation_sparsity(self, x, loctype):
if self.afrac is not None and loctype in self.afrac_loctypes.split(","):
def keep_abstopk(x, k):
ret = torch.zeros_like(x)
_, topk_inds = torch.topk(x.abs(), k, dim=-1, sorted=False)
ret.scatter_(-1, topk_inds, x.gather(-1, topk_inds))
return ret
x = keep_abstopk(
x,
k=int(self.afrac * x.shape[-1]),
)
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
if config.cat_pos_emb:
block_cls = BlockCatPosEmb
else:
block_cls = Block
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.d_model),
wpe=nn.Embedding(config.block_size, config.d_pos_emb or config.d_model),
drop=nn.Dropout(config.dropout),
h=nn.ModuleList([(block_cls(config)) for _ in range(config.n_layer)]),
ln_f=nn.RMSNorm(config.d_model)
if config.rms_norm
else LayerNorm(config.d_model, bias=config.ln_bias),
)
)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.register_buffer(
"final_logits_bias", torch.zeros(config.vocab_size, dtype=torch.float32)
)
if self.config.enable_bigram_table:
if self.config.learnable_bigram_table:
# HACK: low rank to fit in mem
self.bigram_table = nn.Parameter(
torch.zeros(config.vocab_size, config.vocab_size, dtype=torch.float32)
)
else:
self.register_buffer(
"bigram_table",
torch.zeros(config.vocab_size, config.vocab_size, dtype=torch.float32),
)
else:
self.bigram_table = None
# Never tie embeddings/unembed to avoid accidental aliasing in exports.
config.tied_unembed = False
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith("c_proj.weight"):
if p.is_sparse:
num_nonzero = p._nnz()
p._values().data = (
sample_top_k(n=p.numel(), k=num_nonzero, shape=(num_nonzero,))
* 0.02
/ math.sqrt(2 * config.n_layer)
)
else:
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * config.n_layer))
# If requested, initialize positional embeddings with fixed sinusoids and freeze
if config.cat_pos_emb and config.sinusoidal_cat_pos_emb:
assert config.d_pos_emb is not None, (
"sinusoidal_cat_pos_emb requires cat_pos_emb (d_pos_emb must be set)"
)
with torch.no_grad():
T = config.block_size
D = config.d_pos_emb
device = self.transformer.wpe.weight.device
dtype = self.transformer.wpe.weight.dtype
positions = torch.arange(T, device=device, dtype=dtype).unsqueeze(1) # [T,1]
d_half = max(1, D // 2)
# periods from 4 tokens up to block_size tokens (log-spaced)
T_float = float(T)
p_min = 4.0
p_max = max(p_min, T_float)
periods = torch.logspace(
math.log10(p_min), math.log10(p_max), steps=d_half, device=device, dtype=dtype
)
freqs = 2 * math.pi / periods # [d_half]
angles = positions * freqs # [T, d_half]
sinv = torch.sin(angles)
cosv = torch.cos(angles)
enc = torch.cat([sinv, cosv], dim=1) # [T, 2*d_half]
if enc.shape[1] < D:
pad = torch.zeros(T, D - enc.shape[1], device=device, dtype=dtype)
enc = torch.cat([enc, pad], dim=1)
elif enc.shape[1] > D:
enc = enc[:, :D]
self.transformer.wpe.weight.copy_(enc)
self.transformer.wpe.weight.requires_grad_(False)
# report number of parameters
print("number of parameters: %.2fM" % (self.get_num_params() / 1e6,))
@torch.no_grad()
def _initialize_weights(self, module: nn.Module) -> None:
"""
Compatibility shim for newer `transformers` versions.
`transformers.PreTrainedModel.initialize_weights()` will treat any submodule that
defines `_init_weights` as a nested "sub-model" and will recursively call that
submodule's `_initialize_weights`. Our core `GPT` module historically only
implemented `_init_weights`, so we provide this wrapper to match HF's contract.
"""
if getattr(module, "_is_hf_initialized", False):
return
self._init_weights(module)
module._is_hf_initialized = True
def get_num_params(self, non_embedding=True):
"""
Return the number of parameters in the model.
For non-embedding count (default), the position embeddings get subtracted.
The token embeddings would too, except due to the parameter sharing these
params are actually used as weights in the final layer, so we include them.
"""
n_params = sum(p.numel() for p in self.parameters())
if non_embedding:
n_params -= self.transformer.wpe.weight.numel()
return n_params
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None, include_resid_mid=False):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, (
f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
)
# pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
# forward the GPT model itself
tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, d_model)
# pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, d_model)
pos_emb = self.transformer.wpe.weight[:t].unsqueeze(0)
if self.config.cat_pos_emb:
x = self.transformer.drop(tok_emb)
else:
x = self.transformer.drop(tok_emb + pos_emb)
if self.config.debug_nans:
assert x.isfinite().all(), "nan in initial post-embedding"
if self.config.enable_bigram_table:
# add bigram table to the logits bias
additional_logits_bias = F.embedding(idx, self.bigram_table, padding_idx=-1)
additional_logits_bias = additional_logits_bias.to(x.dtype)
else:
additional_logits_bias = None
if self.config.cat_pos_emb:
pos_emb_to_cat = pos_emb
if self.config.dropout_cat_pos_emb:
pos_emb_to_cat = self.transformer.drop(pos_emb)
else:
pos_emb_to_cat = None
return self.forward_tail(
x,
n=0,
targets=targets,
additional_logits_bias=additional_logits_bias,
include_resid_mid=include_resid_mid, # this is hacky we should just switch to using hooks
pos_emb_to_cat=pos_emb_to_cat,
)
def forward_tail(
self,
x,
n,
targets=None,
additional_logits_bias=None,
include_resid_mid=False,
pos_emb_to_cat=None,
):
# print(x.shape)
hs = []
blks = list(self.transformer.h)
if include_resid_mid:
blks = list_join(
[
[
blk.forward_attn_block,
blk.forward_mlp_block,
]
for blk in blks
]
)
assert n <= len(blks)
for i, block_fn in enumerate(blks[n:]):
global curlayer
curlayer = i
with hook_namespace(f"{i // 2}") if include_resid_mid else hook_namespace(f"{i}"):
hs.append(x)
if self.config.cat_pos_emb:
x = block_fn(x, pos_emb_to_cat)
else:
x = block_fn(x)
x = hook_save("final_resid", x)
x = self.transformer.ln_f(x)
logits = (
self.lm_head(x)
+ self.final_logits_bias
+ (additional_logits_bias if additional_logits_bias is not None else 0)
)
if targets is not None:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
else:
loss = torch.zeros(1, device=x.device)
return logits, loss, hs # hs is deprecated in favor of hook stuff
def crop_block_size(self, block_size):
# model surgery to decrease the block size if necessary
# e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
# but want to use a smaller block size for some smaller, simpler model
assert block_size <= self.config.block_size
self.config.block_size = block_size
self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
for block in self.transformer.h:
if hasattr(block.attn, "bias"):
block.attn.bias = block.attn.bias[:, :, :block_size, :block_size]
@torch.no_grad()
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
"""
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
for _ in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = (
idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size :]
)
# forward the model to get the logits for the index in the sequence
logits, _, _ = self(idx_cond)
# pluck the logits at the final step and scale by desired temperature
logits = logits[:, -1, :] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, -1:]] = -float("Inf")
# apply softmax to convert logits to (normalized) probabilities
probs = F.softmax(logits, dim=-1)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=1)
return idx
def is_mlp_param(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].mlp.c_fc.weight),
id(self.transformer.h[i].mlp.c_proj.weight),
]
for i in range(self.config.n_layer)
]
)
def is_param_embed(self, p):
return p is self.transformer.wte.weight or p is self.transformer.wpe.weight
def is_attn_param(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].attn.c_attn.weight),
id(self.transformer.h[i].attn.c_proj.weight),
]
for i in range(self.config.n_layer)
]
)
def is_bias(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].attn.c_attn.bias),
id(self.transformer.h[i].attn.c_proj.bias),
id(self.transformer.h[i].mlp.c_fc.bias),
id(self.transformer.h[i].mlp.c_proj.bias),
]
for i in range(self.config.n_layer)
]
)
def is_ln_param(self, p):
return id(p) in list_join(
[
[
id(self.transformer.h[i].ln_1.weight),
id(self.transformer.h[i].ln_2.weight),
]
for i in range(self.config.n_layer)
]
) + [
id(self.transformer.ln_f.weight),
]
def is_sparse_param(self, p, dense_embeddings=None, dense_unembed=None, dense_biases=None):
# if these params aren't specified, then still give answers, but only for uncontroversial params
if dense_embeddings is None:
assert p is not self.transformer.wte.weight and p is not self.transformer.wpe.weight
if dense_unembed is None:
assert p is not self.lm_head.weight
if dense_biases is None:
assert not self.is_bias(p)
if p is self.transformer.wte.weight or p is self.transformer.wpe.weight:
return not dense_embeddings
if p is self.lm_head.weight:
return not dense_unembed
if self.is_bias(p):
return not dense_biases
return id(p) in list_join(
[
[
id(self.transformer.h[i].attn.c_attn.weight),
id(self.transformer.h[i].attn.c_proj.weight),
id(self.transformer.h[i].mlp.c_fc.weight),
id(self.transformer.h[i].mlp.c_proj.weight),
]
for i in range(self.config.n_layer)
]
)
def list_join(xss: list[list]) -> list:
"""monadic join for lists"""
return [x for xs in xss for x in xs]