Papers
arxiv:1902.11153

On the generalization of GAN image forensics

Published on Feb 27, 2019
Authors:
,
,
,

Abstract

A forensic CNN model using preprocessed images improves generalization in detecting realistic GAN-generated face images.

AI-generated summary

Recently the GAN generated face images are more and more realistic with high-quality, even hard for human eyes to detect. On the other hand, the forensics community keeps on developing methods to detect these generated fake images and try to guarantee the credibility of visual contents. Although researchers have developed some methods to detect generated images, few of them explore the important problem of generalization ability of forensics model. As new types of GANs are emerging fast, the generalization ability of forensics models to detect new types of GAN images is absolutely an essential research topic. In this paper, we explore this problem and propose to use preprocessed images to train a forensic CNN model. By applying similar image level preprocessing to both real and fake training images, the forensics model is forced to learn more intrinsic features to classify the generated and real face images. Our experimental results also prove the effectiveness of the proposed method.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/1902.11153 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/1902.11153 in a dataset README.md to link it from this page.

Spaces citing this paper 1

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.