new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 27

The Gold Medals in an Empty Room: Diagnosing Metalinguistic Reasoning in LLMs with Camlang

Large Language Models (LLMs) achieve gold-medal performance across many benchmarks, yet it remains unclear whether such success reflects genuine reasoning or pattern matching. From a cognitive science perspective, an informative test is whether models can master an unfamiliar language through explicit metalinguistic deductive learning, a paradigm where human learners can reliably internalise grammatical systems through metalinguistic reasoning. We address this question with Camlang, a novel constructed language that exhibits naturalistic yet unattested feature combinations. Camlang consists of two explicit resources, a grammar book and a bilingual dictionary, which mirror adult second-language learning via explicit grammar rules and lexical lookup, and enable us to disentangle errors in morpho-syntax, lexical semantics, and sentence-level reasoning. Human experiments show that these resources are sufficient for participants to acquire Camlang and successfully solve Camlang tasks. To operationalise evaluation, we adapt CommonsenseQA into Camlang, creating Camlang-CSQA-v0, the first task in a broader suite where solving questions requires applying grammar rules and lexical mappings. Experimental results show that GPT-5 achieves 98\% EM accuracy in English but only 47\% in Camlang, far below human performance at 87\%, while other state-of-the-art reasoning LLMs perform even worse. Human verification further reveals that most model successes stem from shallow lexical alignment while GPT-5 shows emerging metalinguistic awareness to a limited extent but not systematic grammatical mastery as humans. Camlang establishes a cognitively grounded evaluation paradigm that exposes fundamental gaps between current models and human metalinguistic competence.

  • 6 authors
·
Aug 30, 2025 1

Limits on the accuracy of contact inhibition of locomotion

Cells that collide with each other repolarize away from contact, in a process called contact inhibition of locomotion (CIL), which is necessary for correct development of the embryo. CIL can occur even when cells make a micron-scale contact with a neighbor - much smaller than their size. How precisely can a cell sense cell-cell contact and repolarize in the correct direction? What factors control whether a cell recognizes it has contacted a neighbor? We propose a theoretical model for the limits of CIL where cells recognize the presence of another cell by binding the protein ephrin with the Eph receptor. This recognition is made difficult by the presence of interfering ligands that bind nonspecifically. Both theoretical predictions and simulation results show that it becomes more difficult to sense cell-cell contact when it is difficult to distinguish ephrin from the interfering ligands, or when there are more interfering ligands, or when the contact width decreases. However, the error of estimating contact position remains almost constant when the contact width changes. This happens because the cell gains spatial information largely from the boundaries of cell-cell contact. We study using statistical decision theory the likelihood of a false positive CIL event in the absence of cell-cell contact, and the likelihood of a false negative where CIL does not occur when another cell is present. Our results suggest that the cell is more likely to make incorrect decisions when the contact width is very small or so large that it nears the cell's perimeter. However, in general, we find that cells have the ability to make reasonably reliable CIL decisions even for very narrow (micron-scale) contacts, even if the concentration of interfering ligands is ten times that of the correct ligands.

  • 2 authors
·
Oct 31, 2023