new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 5

DatasetEquity: Are All Samples Created Equal? In The Quest For Equity Within Datasets

Data imbalance is a well-known issue in the field of machine learning, attributable to the cost of data collection, the difficulty of labeling, and the geographical distribution of the data. In computer vision, bias in data distribution caused by image appearance remains highly unexplored. Compared to categorical distributions using class labels, image appearance reveals complex relationships between objects beyond what class labels provide. Clustering deep perceptual features extracted from raw pixels gives a richer representation of the data. This paper presents a novel method for addressing data imbalance in machine learning. The method computes sample likelihoods based on image appearance using deep perceptual embeddings and clustering. It then uses these likelihoods to weigh samples differently during training with a proposed Generalized Focal Loss function. This loss can be easily integrated with deep learning algorithms. Experiments validate the method's effectiveness across autonomous driving vision datasets including KITTI and nuScenes. The loss function improves state-of-the-art 3D object detection methods, achieving over 200% AP gains on under-represented classes (Cyclist) in the KITTI dataset. The results demonstrate the method is generalizable, complements existing techniques, and is particularly beneficial for smaller datasets and rare classes. Code is available at: https://github.com/towardsautonomy/DatasetEquity

  • 4 authors
·
Aug 18, 2023

Unifying Continuous and Discrete Text Diffusion with Non-simultaneous Diffusion Processes

Diffusion models have emerged as a promising approach for text generation, with recent works falling into two main categories: discrete and continuous diffusion models. Discrete diffusion models apply token corruption independently using categorical distributions, allowing for different diffusion progress across tokens but lacking fine-grained control. Continuous diffusion models map tokens to continuous spaces and apply fine-grained noise, but the diffusion progress is uniform across tokens, limiting their ability to capture semantic nuances. To address these limitations, we propose \underline{N}on-simultan\underline{e}ous C\underline{o}ntinuous \underline{Diff}usion Models (NeoDiff), a novel diffusion model that integrates the strengths of both discrete and continuous approaches. NeoDiff introduces a Poisson diffusion process for the forward process, enabling a flexible and fine-grained noising paradigm, and employs a time predictor for the reverse process to adaptively modulate the denoising progress based on token semantics. Furthermore, NeoDiff utilizes an optimized schedule for inference to ensure more precise noise control and improved performance. Our approach unifies the theories of discrete and continuous diffusion models, offering a more principled and effective framework for text generation. Experimental results on several text generation tasks demonstrate NeoDiff's superior performance compared to baselines of non-autoregressive continuous and discrete diffusion models, iterative-based methods and autoregressive diffusion-based methods. These results highlight NeoDiff's potential as a powerful tool for generating high-quality text and advancing the field of diffusion-based text generation.

  • 3 authors
·
May 28, 2025

Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data

Learning from preference labels plays a crucial role in fine-tuning large language models. There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning. Different methods come with different implementation tradeoffs and performance differences, and existing empirical findings present different conclusions, for instance, some results show that online RL is quite important to attain good fine-tuning results, while others find (offline) contrastive or even purely supervised methods sufficient. This raises a natural question: what kind of approaches are important for fine-tuning with preference data and why? In this paper, we answer this question by performing a rigorous analysis of a number of fine-tuning techniques on didactic and full-scale LLM problems. Our main finding is that, in general, approaches that use on-policy sampling or attempt to push down the likelihood on certain responses (i.e., employ a "negative gradient") outperform offline and maximum likelihood objectives. We conceptualize our insights and unify methods that use on-policy sampling or negative gradient under a notion of mode-seeking objectives for categorical distributions. Mode-seeking objectives are able to alter probability mass on specific bins of a categorical distribution at a fast rate compared to maximum likelihood, allowing them to relocate masses across bins more effectively. Our analysis prescribes actionable insights for preference fine-tuning of LLMs and informs how data should be collected for maximal improvement.

  • 9 authors
·
Apr 22, 2024

Gumbel-Softmax Flow Matching with Straight-Through Guidance for Controllable Biological Sequence Generation

Flow matching in the continuous simplex has emerged as a promising strategy for DNA sequence design, but struggles to scale to higher simplex dimensions required for peptide and protein generation. We introduce Gumbel-Softmax Flow and Score Matching, a generative framework on the simplex based on a novel Gumbel-Softmax interpolant with a time-dependent temperature. Using this interpolant, we introduce Gumbel-Softmax Flow Matching by deriving a parameterized velocity field that transports from smooth categorical distributions to distributions concentrated at a single vertex of the simplex. We alternatively present Gumbel-Softmax Score Matching which learns to regress the gradient of the probability density. Our framework enables high-quality, diverse generation and scales efficiently to higher-dimensional simplices. To enable training-free guidance, we propose Straight-Through Guided Flows (STGFlow), a classifier-based guidance method that leverages straight-through estimators to steer the unconditional velocity field toward optimal vertices of the simplex. STGFlow enables efficient inference-time guidance using classifiers pre-trained on clean sequences, and can be used with any discrete flow method. Together, these components form a robust framework for controllable de novo sequence generation. We demonstrate state-of-the-art performance in conditional DNA promoter design, sequence-only protein generation, and target-binding peptide design for rare disease treatment.

  • 4 authors
·
Mar 21, 2025 3

Symbolic Semantic Segmentation and Interpretation of COVID-19 Lung Infections in Chest CT volumes based on Emergent Languages

The coronavirus disease (COVID-19) has resulted in a pandemic crippling the a breadth of services critical to daily life. Segmentation of lung infections in computerized tomography (CT) slices could be be used to improve diagnosis and understanding of COVID-19 in patients. Deep learning systems lack interpretability because of their black box nature. Inspired by human communication of complex ideas through language, we propose a symbolic framework based on emergent languages for the segmentation of COVID-19 infections in CT scans of lungs. We model the cooperation between two artificial agents - a Sender and a Receiver. These agents synergistically cooperate using emergent symbolic language to solve the task of semantic segmentation. Our game theoretic approach is to model the cooperation between agents unlike Generative Adversarial Networks (GANs). The Sender retrieves information from one of the higher layers of the deep network and generates a symbolic sentence sampled from a categorical distribution of vocabularies. The Receiver ingests the stream of symbols and cogenerates the segmentation mask. A private emergent language is developed that forms the communication channel used to describe the task of segmentation of COVID infections. We augment existing state of the art semantic segmentation architectures with our symbolic generator to form symbolic segmentation models. Our symbolic segmentation framework achieves state of the art performance for segmentation of lung infections caused by COVID-19. Our results show direct interpretation of symbolic sentences to discriminate between normal and infected regions, infection morphology and image characteristics. We show state of the art results for segmentation of COVID-19 lung infections in CT.

  • 5 authors
·
Aug 22, 2020

Towards Emergent Language Symbolic Semantic Segmentation and Model Interpretability

Recent advances in methods focused on the grounding problem have resulted in techniques that can be used to construct a symbolic language associated with a specific domain. Inspired by how humans communicate complex ideas through language, we developed a generalized Symbolic Semantic (S^2) framework for interpretable segmentation. Unlike adversarial models (e.g., GANs), we explicitly model cooperation between two agents, a Sender and a Receiver, that must cooperate to achieve a common goal. The Sender receives information from a high layer of a segmentation network and generates a symbolic sentence derived from a categorical distribution. The Receiver obtains the symbolic sentences and co-generates the segmentation mask. In order for the model to converge, the Sender and Receiver must learn to communicate using a private language. We apply our architecture to segment tumors in the TCGA dataset. A UNet-like architecture is used to generate input to the Sender network which produces a symbolic sentence, and a Receiver network co-generates the segmentation mask based on the sentence. Our Segmentation framework achieved similar or better performance compared with state-of-the-art segmentation methods. In addition, our results suggest direct interpretation of the symbolic sentences to discriminate between normal and tumor tissue, tumor morphology, and other image characteristics.

  • 5 authors
·
Jul 18, 2020

On Unsupervised Prompt Learning for Classification with Black-box Language Models

Large language models (LLMs) have achieved impressive success in text-formatted learning problems, and most popular LLMs have been deployed in a black-box fashion. Meanwhile, fine-tuning is usually necessary for a specific downstream task to obtain better performance, and this functionality is provided by the owners of the black-box LLMs. To fine-tune a black-box LLM, labeled data are always required to adjust the model parameters. However, in many real-world applications, LLMs can label textual datasets with even better quality than skilled human annotators, motivating us to explore the possibility of fine-tuning black-box LLMs with unlabeled data. In this paper, we propose unsupervised prompt learning for classification with black-box LLMs, where the learning parameters are the prompt itself and the pseudo labels of unlabeled data. Specifically, the prompt is modeled as a sequence of discrete tokens, and every token has its own to-be-learned categorical distribution. On the other hand, for learning the pseudo labels, we are the first to consider the in-context learning (ICL) capabilities of LLMs: we first identify reliable pseudo-labeled data using the LLM, and then assign pseudo labels to other unlabeled data based on the prompt, allowing the pseudo-labeled data to serve as in-context demonstrations alongside the prompt. Those in-context demonstrations matter: previously, they are involved when the prompt is used for prediction while they are not involved when the prompt is trained; thus, taking them into account during training makes the prompt-learning and prompt-using stages more consistent. Experiments on benchmark datasets show the effectiveness of our proposed algorithm. After unsupervised prompt learning, we can use the pseudo-labeled dataset for further fine-tuning by the owners of the black-box LLMs.

  • 5 authors
·
Oct 3, 2024

Entity Embedding-based Anomaly Detection for Heterogeneous Categorical Events

Anomaly detection plays an important role in modern data-driven security applications, such as detecting suspicious access to a socket from a process. In many cases, such events can be described as a collection of categorical values that are considered as entities of different types, which we call heterogeneous categorical events. Due to the lack of intrinsic distance measures among entities, and the exponentially large event space, most existing work relies heavily on heuristics to calculate abnormal scores for events. Different from previous work, we propose a principled and unified probabilistic model APE (Anomaly detection via Probabilistic pairwise interaction and Entity embedding) that directly models the likelihood of events. In this model, we embed entities into a common latent space using their observed co-occurrence in different events. More specifically, we first model the compatibility of each pair of entities according to their embeddings. Then we utilize the weighted pairwise interactions of different entity types to define the event probability. Using Noise-Contrastive Estimation with "context-dependent" noise distribution, our model can be learned efficiently regardless of the large event space. Experimental results on real enterprise surveillance data show that our methods can accurately detect abnormal events compared to other state-of-the-art abnormal detection techniques.

  • 5 authors
·
Aug 26, 2016