- DNSMOS P.835: A Non-Intrusive Perceptual Objective Speech Quality Metric to Evaluate Noise Suppressors Human subjective evaluation is the gold standard to evaluate speech quality optimized for human perception. Perceptual objective metrics serve as a proxy for subjective scores. We have recently developed a non-intrusive speech quality metric called Deep Noise Suppression Mean Opinion Score (DNSMOS) using the scores from ITU-T Rec. P.808 subjective evaluation. The P.808 scores reflect the overall quality of the audio clip. ITU-T Rec. P.835 subjective evaluation framework gives the standalone quality scores of speech and background noise in addition to the overall quality. In this work, we train an objective metric based on P.835 human ratings that outputs 3 scores: i) speech quality (SIG), ii) background noise quality (BAK), and iii) the overall quality (OVRL) of the audio. The developed metric is highly correlated with human ratings, with a Pearson's Correlation Coefficient (PCC)=0.94 for SIG and PCC=0.98 for BAK and OVRL. This is the first non-intrusive P.835 predictor we are aware of. DNSMOS P.835 is made publicly available as an Azure service. 3 authors · Oct 4, 2021
- The Intel Neuromorphic DNS Challenge A critical enabler for progress in neuromorphic computing research is the ability to transparently evaluate different neuromorphic solutions on important tasks and to compare them to state-of-the-art conventional solutions. The Intel Neuromorphic Deep Noise Suppression Challenge (Intel N-DNS Challenge), inspired by the Microsoft DNS Challenge, tackles a ubiquitous and commercially relevant task: real-time audio denoising. Audio denoising is likely to reap the benefits of neuromorphic computing due to its low-bandwidth, temporal nature and its relevance for low-power devices. The Intel N-DNS Challenge consists of two tracks: a simulation-based algorithmic track to encourage algorithmic innovation, and a neuromorphic hardware (Loihi 2) track to rigorously evaluate solutions. For both tracks, we specify an evaluation methodology based on energy, latency, and resource consumption in addition to output audio quality. We make the Intel N-DNS Challenge dataset scripts and evaluation code freely accessible, encourage community participation with monetary prizes, and release a neuromorphic baseline solution which shows promising audio quality, high power efficiency, and low resource consumption when compared to Microsoft NsNet2 and a proprietary Intel denoising model used in production. We hope the Intel N-DNS Challenge will hasten innovation in neuromorphic algorithms research, especially in the area of training tools and methods for real-time signal processing. We expect the winners of the challenge will demonstrate that for problems like audio denoising, significant gains in power and resources can be realized on neuromorphic devices available today compared to conventional state-of-the-art solutions. 8 authors · Mar 16, 2023
- Fine-tuning Large Language Models for DGA and DNS Exfiltration Detection Domain Generation Algorithms (DGAs) are malicious techniques used by malware to dynamically generate seemingly random domain names for communication with Command & Control (C&C) servers. Due to the fast and simple generation of DGA domains, detection methods must be highly efficient and precise to be effective. Large Language Models (LLMs) have demonstrated their proficiency in real-time detection tasks, making them ideal candidates for detecting DGAs. Our work validates the effectiveness of fine-tuned LLMs for detecting DGAs and DNS exfiltration attacks. We developed LLM models and conducted comprehensive evaluation using a diverse dataset comprising 59 distinct real-world DGA malware families and normal domain data. Our LLM model significantly outperformed traditional natural language processing techniques, especially in detecting unknown DGAs. We also evaluated its performance on DNS exfiltration datasets, demonstrating its effectiveness in enhancing cybersecurity measures. To the best of our knowledge, this is the first work that empirically applies LLMs for DGA and DNS exfiltration detection. 4 authors · Oct 29, 2024
- Explaining Machine Learning DGA Detectors from DNS Traffic Data One of the most common causes of lack of continuity of online systems stems from a widely popular Cyber Attack known as Distributed Denial of Service (DDoS), in which a network of infected devices (botnet) gets exploited to flood the computational capacity of services through the commands of an attacker. This attack is made by leveraging the Domain Name System (DNS) technology through Domain Generation Algorithms (DGAs), a stealthy connection strategy that yet leaves suspicious data patterns. To detect such threats, advances in their analysis have been made. For the majority, they found Machine Learning (ML) as a solution, which can be highly effective in analyzing and classifying massive amounts of data. Although strongly performing, ML models have a certain degree of obscurity in their decision-making process. To cope with this problem, a branch of ML known as Explainable ML tries to break down the black-box nature of classifiers and make them interpretable and human-readable. This work addresses the problem of Explainable ML in the context of botnet and DGA detection, which at the best of our knowledge, is the first to concretely break down the decisions of ML classifiers when devised for botnet/DGA detection, therefore providing global and local explanations. 4 authors · Aug 10, 2022