1 ETC: Encoding Long and Structured Inputs in Transformers Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, Extended Transformer Construction (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a Contrastive Predictive Coding (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs. 10 authors · Apr 17, 2020
- ETC-NLG: End-to-end Topic-Conditioned Natural Language Generation Plug-and-play language models (PPLMs) enable topic-conditioned natural language generation by pairing large pre-trained generators with attribute models used to steer the predicted token distribution towards the selected topic. Despite their computational efficiency, PPLMs require large amounts of labeled texts to effectively balance generation fluency and proper conditioning, making them unsuitable for low-resource settings. We present ETC-NLG, an approach leveraging topic modeling annotations to enable fully-unsupervised End-to-end Topic-Conditioned Natural Language Generation over emergent topics in unlabeled document collections. We first test the effectiveness of our approach in a low-resource setting for Italian, evaluating the conditioning for both topic models and gold annotations. We then perform a comparative evaluation of ETC-NLG for Italian and English using a parallel corpus. Finally, we propose an automatic approach to estimate the effectiveness of conditioning on the generated utterances. 2 authors · Aug 25, 2020
10 ETCH: Generalizing Body Fitting to Clothed Humans via Equivariant Tightness Fitting a body to a 3D clothed human point cloud is a common yet challenging task. Traditional optimization-based approaches use multi-stage pipelines that are sensitive to pose initialization, while recent learning-based methods often struggle with generalization across diverse poses and garment types. We propose Equivariant Tightness Fitting for Clothed Humans, or ETCH, a novel pipeline that estimates cloth-to-body surface mapping through locally approximate SE(3) equivariance, encoding tightness as displacement vectors from the cloth surface to the underlying body. Following this mapping, pose-invariant body features regress sparse body markers, simplifying clothed human fitting into an inner-body marker fitting task. Extensive experiments on CAPE and 4D-Dress show that ETCH significantly outperforms state-of-the-art methods -- both tightness-agnostic and tightness-aware -- in body fitting accuracy on loose clothing (16.7% ~ 69.5%) and shape accuracy (average 49.9%). Our equivariant tightness design can even reduce directional errors by (67.2% ~ 89.8%) in one-shot (or out-of-distribution) settings. Qualitative results demonstrate strong generalization of ETCH, regardless of challenging poses, unseen shapes, loose clothing, and non-rigid dynamics. We will release the code and models soon for research purposes at https://boqian-li.github.io/ETCH/. 5 authors · Mar 13, 2025 2
8 EtCon: Edit-then-Consolidate for Reliable Knowledge Editing Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, proving effective for making selective edits. However, a significant gap exists between their performance in controlled, teacher-forcing evaluations and their real-world effectiveness in lifelong learning scenarios, which greatly limits their practical applicability. This work's empirical analysis reveals two recurring issues associated with this gap: (1) Most traditional methods lead the edited model to overfit to the new fact, thereby degrading pre-trained capabilities; (2) There is a critical absence of a knowledge consolidation stage, leaving new facts insufficiently integrated into LLMs' inference-time behavior under autoregressive generation, thereby leading to a mismatch between parametric knowledge and actual generation behavior. To this end, we propose Edit-then-Consolidate, a novel knowledge editing paradigm that aims to bridge the gap between theoretical knowledge editing methods and their real-world applicability. Specifically, (1) our framework mitigates overfitting via Targeted Proximal Supervised Fine-Tuning (TPSFT) that localizes the edit via a trust-region objective to limit policy drift; (2) Then, a consolidation stage using Group Relative Policy Optimization (GRPO) aligns the edited knowledge with CoT-based inference policy by optimizing trajectory-level behavior under comprehensive reward signals. Extensive experiments demonstrate our framework consistently improves editing reliability and generalization under real-world evaluations, while better preserving locality and pre-trained capabilities. 8 authors · Dec 4, 2025 2
- Efficient and tunable narrowband second-harmonic generation by a large-area etchless lithium niobate metasurface Optical resonances in nanostructures enable strong enhancement of nonlinear processes at the nanoscale, such as second-harmonic generation (SHG), with high-Q modes providing intensified light--matter interactions and sharp spectral selectivity for applications in filtering, sensing, and nonlinear spectroscopy. Thanks to the recent advances in thin-film lithium niobate (TFLN) technology, these key features can be now translated to lithium niobate for realizing novel nanoscale nonlinear optical platforms. Here, we demonstrate a large-area metasurface, realized by scalable nanoimprint lithography, comprising a slanted titanium dioxide (TiO_2) nanograting on etchless TFLN for efficient narrowband SHG. This is enabled by the optimal coupling of quasi-bound state in the continuum (q-BIC) modes with a narrowband pulsed laser pump. The demonstrated normalized SHG efficiency is 0.15%,cm^2/GW, which is among the largest reported for LN metasurfaces. The low pump peak intensity (3.64~kW/cm^2) employed, which enables SHG even by continuous-wave pumping, allows envisioning integrated and portable photonic applications. SHG wavelength tuning from 870 to 920~nm with stable output power as well as polarization control is also achieved by off-normal pump illumination. This versatile platform opens new opportunities for sensing, THz generation and detection, and ultrafast electro-optic modulation of nonlinear optical signals. 11 authors · Jan 31
1 Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments In this work, we tackle the limitations of current LiDAR-based 3D object detection systems, which are hindered by a restricted class vocabulary and the high costs associated with annotating new object classes. Our exploration of open-vocabulary (OV) learning in urban environments aims to capture novel instances using pre-trained vision-language models (VLMs) with multi-sensor data. We design and benchmark a set of four potential solutions as baselines, categorizing them into either top-down or bottom-up approaches based on their input data strategies. While effective, these methods exhibit certain limitations, such as missing novel objects in 3D box estimation or applying rigorous priors, leading to biases towards objects near the camera or of rectangular geometries. To overcome these limitations, we introduce a universal Find n' Propagate approach for 3D OV tasks, aimed at maximizing the recall of novel objects and propagating this detection capability to more distant areas thereby progressively capturing more. In particular, we utilize a greedy box seeker to search against 3D novel boxes of varying orientations and depth in each generated frustum and ensure the reliability of newly identified boxes by cross alignment and density ranker. Additionally, the inherent bias towards camera-proximal objects is alleviated by the proposed remote simulator, which randomly diversifies pseudo-labeled novel instances in the self-training process, combined with the fusion of base samples in the memory bank. Extensive experiments demonstrate a 53% improvement in novel recall across diverse OV settings, VLMs, and 3D detectors. Notably, we achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes. The source code is made available at https://github.com/djamahl99/findnpropagate. 4 authors · Mar 20, 2024
- RETUYT in TASS 2017: Sentiment Analysis for Spanish Tweets using SVM and CNN This article presents classifiers based on SVM and Convolutional Neural Networks (CNN) for the TASS 2017 challenge on tweets sentiment analysis. The classifier with the best performance in general uses a combination of SVM and CNN. The use of word embeddings was particularly useful for improving the classifiers performance. 4 authors · Oct 17, 2017
1 Enhancing Speech-Driven 3D Facial Animation with Audio-Visual Guidance from Lip Reading Expert Speech-driven 3D facial animation has recently garnered attention due to its cost-effective usability in multimedia production. However, most current advances overlook the intelligibility of lip movements, limiting the realism of facial expressions. In this paper, we introduce a method for speech-driven 3D facial animation to generate accurate lip movements, proposing an audio-visual multimodal perceptual loss. This loss provides guidance to train the speech-driven 3D facial animators to generate plausible lip motions aligned with the spoken transcripts. Furthermore, to incorporate the proposed audio-visual perceptual loss, we devise an audio-visual lip reading expert leveraging its prior knowledge about correlations between speech and lip motions. We validate the effectiveness of our approach through broad experiments, showing noticeable improvements in lip synchronization and lip readability performance. Codes are available at https://3d-talking-head-avguide.github.io/. 7 authors · Jul 1, 2024
2 On the Opportunities and Risks of Foundation Models AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature. 114 authors · Aug 16, 2021
- Demonstrating Agreement between Radio and Fluorescence Measurements of the Depth of Maximum of Extensive Air Showers at the Pierre Auger Observatory We show, for the first time, radio measurements of the depth of shower maximum (X_max) of air showers induced by cosmic rays that are compared to measurements of the established fluorescence method at the same location. Using measurements at the Pierre Auger Observatory we show full compatibility between our radio and the previously published fluorescence data set, and between a subset of air showers observed simultaneously with both radio and fluorescence techniques, a measurement setup unique to the Pierre Auger Observatory. Furthermore, we show radio X_max resolution as a function of energy and demonstrate the ability to make competitive high-resolution X_max measurements with even a sparse radio array. With this, we show that the radio technique is capable of cosmic-ray mass composition studies, both at Auger and at other experiments. 375 authors · Oct 30, 2023