- An Explainable Machine Learning Approach to Visual-Interactive Labeling: A Case Study on Non-communicable Disease Data We introduce a new visual-interactive tool: Explainable Labeling Assistant (XLabel) that takes an explainable machine learning approach to data labeling. The main component of XLabel is the Explainable Boosting Machine (EBM), a predictive model that can calculate the contribution of each input feature towards the final prediction. As a case study, we use XLabel to predict the labels of four non-communicable diseases (NCDs): diabetes, hypertension, chronic kidney disease, and dyslipidemia. We demonstrate that EBM is an excellent choice of predictive model by comparing it against a rule-based and four other machine learning models. By performing 5-fold cross-validation on 427 medical records, EBM's prediction accuracy, precision, and F1-score are greater than 0.95 in all four NCDs. It performed as well as two black-box models and outperformed the other models in these metrics. In an additional experiment, when 40% of the records were intentionally mislabeled, EBM could recall the correct labels of more than 90% of these records. 4 authors · Sep 26, 2022
- Accuracy, Interpretability, and Differential Privacy via Explainable Boosting We show that adding differential privacy to Explainable Boosting Machines (EBMs), a recent method for training interpretable ML models, yields state-of-the-art accuracy while protecting privacy. Our experiments on multiple classification and regression datasets show that DP-EBM models suffer surprisingly little accuracy loss even with strong differential privacy guarantees. In addition to high accuracy, two other benefits of applying DP to EBMs are: a) trained models provide exact global and local interpretability, which is often important in settings where differential privacy is needed; and b) the models can be edited after training without loss of privacy to correct errors which DP noise may have introduced. 5 authors · Jun 17, 2021
- InterpretML: A Unified Framework for Machine Learning Interpretability InterpretML is an open-source Python package which exposes machine learning interpretability algorithms to practitioners and researchers. InterpretML exposes two types of interpretability - glassbox models, which are machine learning models designed for interpretability (ex: linear models, rule lists, generalized additive models), and blackbox explainability techniques for explaining existing systems (ex: Partial Dependence, LIME). The package enables practitioners to easily compare interpretability algorithms by exposing multiple methods under a unified API, and by having a built-in, extensible visualization platform. InterpretML also includes the first implementation of the Explainable Boosting Machine, a powerful, interpretable, glassbox model that can be as accurate as many blackbox models. The MIT licensed source code can be downloaded from github.com/microsoft/interpret. 4 authors · Sep 19, 2019