- The Hallucination Dilemma: Factuality-Aware Reinforcement Learning for Large Reasoning Models Large language models (LLMs) have significantly advanced in reasoning tasks through reinforcement learning (RL) optimization, achieving impressive capabilities across various challenging benchmarks. However, our empirical analysis reveals a critical drawback: reasoning-oriented RL fine-tuning significantly increases the prevalence of hallucinations. We theoretically analyze the RL training dynamics, identifying high-variance gradient, entropy-induced randomness, and susceptibility to spurious local optima as key factors leading to hallucinations. To address this drawback, we propose Factuality-aware Step-wise Policy Optimization (FSPO), an innovative RL fine-tuning algorithm incorporating explicit factuality verification at each reasoning step. FSPO leverages automated verification against given evidence to dynamically adjust token-level advantage values, incentivizing factual correctness throughout the reasoning process. Experiments across mathematical reasoning and hallucination benchmarks using Qwen2.5 and Llama models demonstrate that FSPO effectively reduces hallucinations while enhancing reasoning accuracy, substantially improving both reliability and performance. 2 authors · May 30, 2025
- Zero-shot Factual Consistency Evaluation Across Domains This work addresses the challenge of factual consistency in text generation systems. We unify the tasks of Natural Language Inference, Summarization Evaluation, Factuality Verification and Factual Consistency Evaluation to train models capable of evaluating the factual consistency of source-target pairs across diverse domains. We rigorously evaluate these against eight baselines on a comprehensive benchmark suite comprising 22 datasets that span various tasks, domains, and document lengths. Results demonstrate that our method achieves state-of-the-art performance on this heterogeneous benchmark while addressing efficiency concerns and attaining cross-domain generalization. 1 authors · Aug 7, 2024
4 MedScore: Generalizable Factuality Evaluation of Free-Form Medical Answers by Domain-adapted Claim Decomposition and Verification While Large Language Models (LLMs) can generate fluent and convincing responses, they are not necessarily correct. This is especially apparent in the popular decompose-then-verify factuality evaluation pipeline, where LLMs evaluate generations by decomposing the generations into individual, valid claims. Factuality evaluation is especially important for medical answers, since incorrect medical information could seriously harm the patient. However, existing factuality systems are a poor match for the medical domain, as they are typically only evaluated on objective, entity-centric, formulaic texts such as biographies and historical topics. This differs from condition-dependent, conversational, hypothetical, sentence-structure diverse, and subjective medical answers, which makes decomposition into valid facts challenging. We propose MedScore, a new pipeline to decompose medical answers into condition-aware valid facts and verify against in-domain corpora. Our method extracts up to three times more valid facts than existing methods, reducing hallucination and vague references, and retaining condition-dependency in facts. The resulting factuality score substantially varies by decomposition method, verification corpus, and used backbone LLM, highlighting the importance of customizing each step for reliable factuality evaluation by using our generalizable and modularized pipeline for domain adaptation. Center for Language and Speech Processing @ JHU · May 23, 2025 1
4 FACTORY: A Challenging Human-Verified Prompt Set for Long-Form Factuality Long-form factuality evaluation assesses the ability of models to generate accurate, comprehensive responses to short prompts. Existing benchmarks often lack human verification, leading to potential quality issues. To address this limitation, we introduce FACTORY, a large-scale, human-verified prompt set. Developed using a model-in-the-loop approach and refined by humans, FACTORY includes challenging prompts that are fact-seeking, answerable, and unambiguous. We conduct human evaluations on 6 state-of-the-art language models using FACTORY and existing datasets. Our results show that FACTORY is a challenging benchmark: approximately 40% of the claims made in the responses of SOTA models are not factual, compared to only 10% for other datasets. Our analysis identifies the strengths of FACTORY over prior benchmarks, emphasizing its reliability and the necessity for models to reason across long-tailed facts. 6 authors · Jul 31, 2025 2
- FactBench: A Dynamic Benchmark for In-the-Wild Language Model Factuality Evaluation Language models (LMs) are widely used by an increasing number of users, underscoring the challenge of maintaining factuality across a broad range of topics. We first present VERIFY (Verification and Evidence RetrIeval for FactualitY evaluation), a pipeline to evaluate LMs' factuality in real-world user interactions. VERIFY considers the verifiability of LM-generated content and categorizes content units as supported, unsupported, or undecidable based on the retrieved evidence from the Web. Importantly, factuality judgment by VERIFY correlates better with human evaluations than existing methods. Using VERIFY, we identify "hallucination prompts" across diverse topics, i.e., those eliciting the highest rates of incorrect and inconclusive LM responses. These prompts form FactBench, a dataset of 1K prompts across 150 fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and can be regularly updated with new prompts. We benchmark widely-used LMs from GPT, Gemini, and Llama3.1 family on FactBench, yielding the following key findings: (i) Proprietary models exhibit better factuality, with performance declining from Easy to Hard hallucination prompts. (ii) Llama3.1-405B-Instruct shows comparable or lower factual accuracy than Llama3.1-70B-Instruct across all evaluation methods due to its higher subjectivity that leads to more content labeled as undecidable. (iii) Gemini1.5-Pro shows a significantly higher refusal rate, with over-refusal in 25% of cases. Our code and data are publicly available at https://huggingface.co/spaces/launch/factbench. 4 authors · Oct 29, 2024
18 Optimizing Decomposition for Optimal Claim Verification Current research on the Decompose-Then-Verify paradigm for evaluating the factuality of long-form text typically treats decomposition and verification in isolation, overlooking their interactions and potential misalignment. We find that existing decomposition policies, typically hand-crafted demonstrations, do not align well with downstream verifiers in terms of atomicity -- a novel metric quantifying information density -- leading to suboptimal verification results. We formulate finding the optimal decomposition policy for optimal verification as a bilevel optimization problem. To approximate a solution for this strongly NP-hard problem, we propose dynamic decomposition, a reinforcement learning framework that leverages verifier feedback to learn a policy for dynamically decomposing claims to verifier-preferred atomicity. Experimental results show that dynamic decomposition outperforms existing decomposition policies, improving verification confidence by 0.07 and accuracy by 0.12 (on a 0-1 scale) on average across varying verifiers, datasets, and atomcities of input claims. 4 authors · Mar 19, 2025 2
2 Knowledge-Level Consistency Reinforcement Learning: Dual-Fact Alignment for Long-Form Factuality Hallucination and factuality deficits remain key obstacles to the reliability of large language models (LLMs) in long-form generation. Existing reinforcement learning from human feedback (RLHF) frameworks primarily rely on preference rewards, yet they often overlook the model's internal knowledge boundaries, exacerbating the so-called "hallucination tax". To address this challenge, we propose Knowledge-Level Consistency Reinforcement Learning Framework (KLCF), a novel framework that focuses on the knowledge consistency between the policy model's expressed knowledge and the base model's parametric knowledge, and introduces a Dual-Fact Alignment mechanism to jointly optimize factual recall and precision. Specifically, KLCF leverages pretrained knowledge boundaries to construct fact checklist, guiding online reinforcement learning to improve factual coverage and recall; simultaneously, it trains a self-assessment module based on the base model's internal knowledge to enhance factual precision during generation. Unlike prior methods that rely on external retrieval or heavy verification, our reward design is fully external-knowledge-free and lightweight, making KLCF efficient and easily scalable to large-scale training. Experimental results demonstrate that KLCF substantially improves factuality metrics across multiple long-form benchmarks and effectively alleviates model hallucinations. BAIDU · Sep 28, 2025
2 Improving Factuality and Reasoning in Language Models through Multiagent Debate Large language models (LLMs) have demonstrated remarkable capabilities in language generation, understanding, and few-shot learning in recent years. An extensive body of work has explored how their performance may be further improved through the tools of prompting, ranging from verification, self-consistency, or intermediate scratchpads. In this paper, we present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer. Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks. We also demonstrate that our approach improves the factual validity of generated content, reducing fallacious answers and hallucinations that contemporary models are prone to. Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate. Overall, our findings suggest that such "society of minds" approach has the potential to significantly advance the capabilities of LLMs and pave the way for further breakthroughs in language generation and understanding. 5 authors · May 23, 2023
6 Learning to Reason for Factuality Reasoning Large Language Models (R-LLMs) have significantly advanced complex reasoning tasks but often struggle with factuality, generating substantially more hallucinations than their non-reasoning counterparts on long-form factuality benchmarks. However, extending online Reinforcement Learning (RL), a key component in recent R-LLM advancements, to the long-form factuality setting poses several unique challenges due to the lack of reliable verification methods. Previous work has utilized automatic factuality evaluation frameworks such as FActScore to curate preference data in the offline RL setting, yet we find that directly leveraging such methods as the reward in online RL leads to reward hacking in multiple ways, such as producing less detailed or relevant responses. We propose a novel reward function that simultaneously considers the factual precision, response detail level, and answer relevance, and applies online RL to learn high quality factual reasoning. Evaluated on six long-form factuality benchmarks, our factual reasoning model achieves an average reduction of 23.1 percentage points in hallucination rate, a 23% increase in answer detail level, and no degradation in the overall response helpfulness. 8 authors · Aug 7, 2025 2
2 VeriFact: Enhancing Long-Form Factuality Evaluation with Refined Fact Extraction and Reference Facts Large language models (LLMs) excel at generating long-form responses, but evaluating their factuality remains challenging due to complex inter-sentence dependencies within the generated facts. Prior solutions predominantly follow a decompose-decontextualize-verify pipeline but often fail to capture essential context and miss key relational facts. In this paper, we introduce VeriFact, a factuality evaluation framework designed to enhance fact extraction by identifying and resolving incomplete and missing facts to support more accurate verification results. Moreover, we introduce FactRBench , a benchmark that evaluates both precision and recall in long-form model responses, whereas prior work primarily focuses on precision. FactRBench provides reference fact sets from advanced LLMs and human-written answers, enabling recall assessment. Empirical evaluations show that VeriFact significantly enhances fact completeness and preserves complex facts with critical relational information, resulting in more accurate factuality evaluation. Benchmarking various open- and close-weight LLMs on FactRBench indicate that larger models within same model family improve precision and recall, but high precision does not always correlate with high recall, underscoring the importance of comprehensive factuality assessment. 5 authors · May 14, 2025
7 KnowRL: Exploring Knowledgeable Reinforcement Learning for Factuality Large Language Models (LLMs), particularly slow-thinking models, often exhibit severe hallucination, outputting incorrect content due to an inability to accurately recognize knowledge boundaries during reasoning. While Reinforcement Learning (RL) can enhance complex reasoning abilities, its outcome-oriented reward mechanism often lacks factual supervision over the thinking process, further exacerbating the hallucination problem. To address the high hallucination in slow-thinking models, we propose Knowledge-enhanced RL, KnowRL. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. KnowRL guides models to perform fact-based slow thinking by integrating a factuality reward, based on knowledge verification, into the RL training process, helping them recognize their knowledge boundaries. This targeted factual input during RL training enables the model to learn and internalize fact-based reasoning strategies. By directly rewarding adherence to facts within the reasoning steps, KnowRL fosters a more reliable thinking process. Experimental results on three hallucination evaluation datasets and two reasoning evaluation datasets demonstrate that KnowRL effectively mitigates hallucinations in slow-thinking models while maintaining their original strong reasoning capabilities. Our code is available at https://github.com/zjunlp/KnowRL. 5 authors · Jun 24, 2025 1
2 CoTEVer: Chain of Thought Prompting Annotation Toolkit for Explanation Verification Chain-of-thought (CoT) prompting enables large language models (LLMs) to solve complex reasoning tasks by generating an explanation before the final prediction. Despite it's promising ability, a critical downside of CoT prompting is that the performance is greatly affected by the factuality of the generated explanation. To improve the correctness of the explanations, fine-tuning language models with explanation data is needed. However, there exists only a few datasets that can be used for such approaches, and no data collection tool for building them. Thus, we introduce CoTEVer, a tool-kit for annotating the factual correctness of generated explanations and collecting revision data of wrong explanations. Furthermore, we suggest several use cases where the data collected with CoTEVer can be utilized for enhancing the faithfulness of explanations. Our toolkit is publicly available at https://github.com/SeungoneKim/CoTEVer. 5 authors · Mar 6, 2023
- ChestX-Reasoner: Advancing Radiology Foundation Models with Reasoning through Step-by-Step Verification Recent advances in reasoning-enhanced large language models (LLMs) and multimodal LLMs (MLLMs) have significantly improved performance in complex tasks, yet medical AI models often overlook the structured reasoning processes inherent in clinical practice. In this work, we present ChestX-Reasoner, a radiology diagnosis MLLM designed to leverage process supervision mined directly from clinical reports, reflecting the step-by-step reasoning followed by radiologists. We construct a large dataset by extracting and refining reasoning chains from routine radiology reports. Our two-stage training framework combines supervised fine-tuning and reinforcement learning guided by process rewards to better align model reasoning with clinical standards. We introduce RadRBench-CXR, a comprehensive benchmark featuring 59K visual question answering samples with 301K clinically validated reasoning steps, and propose RadRScore, a metric evaluating reasoning factuality, completeness, and effectiveness. ChestX-Reasoner outperforms existing medical and general-domain MLLMs in both diagnostic accuracy and reasoning ability, achieving 16%, 5.9%, and 18% improvements in reasoning ability compared to the best medical MLLM, the best general MLLM, and its base model, respectively, as well as 3.3%, 24%, and 27% improvements in outcome accuracy. All resources are open-sourced to facilitate further research in medical reasoning MLLMs. 6 authors · Apr 29, 2025
- OpenFactCheck: A Unified Framework for Factuality Evaluation of LLMs The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. Difficulties lie in assessing the factuality of free-form responses in open domains. Also, different papers use disparate evaluation benchmarks and measurements, which renders them hard to compare and hampers future progress. To mitigate these issues, we propose OpenFactCheck, a unified factuality evaluation framework for LLMs. OpenFactCheck consists of three modules: (i) CUSTCHECKER allows users to easily customize an automatic fact-checker and verify the factual correctness of documents and claims, (ii) LLMEVAL, a unified evaluation framework assesses LLM's factuality ability from various perspectives fairly, and (iii) CHECKEREVAL is an extensible solution for gauging the reliability of automatic fact-checkers' verification results using human-annotated datasets. OpenFactCheck is publicly released at https://github.com/yuxiaw/OpenFactCheck. 6 authors · May 9, 2024
20 Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-OASIS After the introduction of Large Language Models (LLMs), there have been substantial improvements in the performance of Natural Language Generation (NLG) tasks, including Text Summarization and Machine Translation. However, LLMs still produce outputs containing hallucinations, that is, content not grounded in factual information. Therefore, developing methods to assess the factuality of LLMs has become urgent. Indeed, resources for factuality evaluation have recently emerged. Although challenging, these resources face one or more of the following limitations: (i) they are tailored to a specific task or domain; (ii) they are limited in size, thereby preventing the training of new factuality evaluators; (iii) they are designed for simpler verification tasks, such as claim verification. To address these issues, we introduce LLM-Oasis, to the best of our knowledge the largest resource for training end-to-end factuality evaluators. LLM-Oasis is constructed by extracting claims from Wikipedia, falsifying a subset of these claims, and generating pairs of factual and unfactual texts. We then rely on human annotators to both validate the quality of our dataset and to create a gold standard test set for benchmarking factuality evaluation systems. Our experiments demonstrate that LLM-Oasis presents a significant challenge for state-of-the-art LLMs, with GPT-4o achieving up to 60% accuracy in our proposed end-to-end factuality evaluation task, highlighting its potential to drive future research in the field. 6 authors · Nov 29, 2024 2
- Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability While language models (LMs) can sometimes generate factually correct text and estimate truth values of individual claims, these generally do not reflect a globally coherent, manipulable model of the world. As a consequence, current LMs also generate incorrect or nonsensical content, and are difficult to edit and bring up to date. We present a method called Deductive Closure Training (DCT) that uses LMs themselves to identify implications of (and contradictions within) the text that they generate, yielding an efficient self-supervised procedure for improving LM factuality. Given a collection of seed documents, DCT prompts LMs to generate additional text implied by these documents, reason globally about the correctness of this generated text, and finally fine-tune on text inferred to be correct. Given seed documents from a trusted source, DCT provides a tool for supervised model updating; if seed documents are sampled from the LM itself, DCT enables fully unsupervised fine-tuning for improved coherence and accuracy. Across the CREAK, MQUaKE, and Reversal Curse datasets, supervised DCT improves LM fact verification and text generation accuracy by 3-26%; on CREAK fully unsupervised DCT improves verification accuracy by 12%. These results show that LMs' reasoning capabilities during inference can be leveraged during training to improve their reliability. 5 authors · Jan 16, 2024
2 Boosting Language Models Reasoning with Chain-of-Knowledge Prompting Recently, Chain-of-Thought (CoT) prompting has delivered success on complex reasoning tasks, which aims at designing a simple prompt like ``Let's think step by step'' or multiple in-context exemplars with well-designed rationales to elicit Large Language Models (LLMs) to generate intermediate reasoning steps. However, the generated rationales often come with mistakes, making unfactual and unfaithful reasoning chains. To mitigate this brittleness, we propose a novel Chain-of-Knowledge (CoK) prompting, where we aim at eliciting LLMs to generate explicit pieces of knowledge evidence in the form of structure triple. This is inspired by our human behaviors, i.e., we can draw a mind map or knowledge map as the reasoning evidence in the brain before answering a complex question. Benefiting from CoK, we additionally introduce a F^2-Verification method to estimate the reliability of the reasoning chains in terms of factuality and faithfulness. For the unreliable response, the wrong evidence can be indicated to prompt the LLM to rethink. Extensive experiments demonstrate that our method can further improve the performance of commonsense, factual, symbolic, and arithmetic reasoning tasks. 5 authors · Jun 10, 2023
78 Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection Despite their remarkable capabilities, large language models (LLMs) often produce responses containing factual inaccuracies due to their sole reliance on the parametric knowledge they encapsulate. Retrieval-Augmented Generation (RAG), an ad hoc approach that augments LMs with retrieval of relevant knowledge, decreases such issues. However, indiscriminately retrieving and incorporating a fixed number of retrieved passages, regardless of whether retrieval is necessary, or passages are relevant, diminishes LM versatility or can lead to unhelpful response generation. We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's quality and factuality through retrieval and self-reflection. Our framework trains a single arbitrary LM that adaptively retrieves passages on-demand, and generates and reflects on retrieved passages and its own generations using special tokens, called reflection tokens. Generating reflection tokens makes the LM controllable during the inference phase, enabling it to tailor its behavior to diverse task requirements. Experiments show that Self-RAG (7B and 13B parameters) significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA, reasoning and fact verification tasks, and it shows significant gains in improving factuality and citation accuracy for long-form generations relative to these models. 5 authors · Oct 17, 2023 6
- UrduFactCheck: An Agentic Fact-Checking Framework for Urdu with Evidence Boosting and Benchmarking The rapid use of large language models (LLMs) has raised critical concerns regarding the factual reliability of their outputs, especially in low-resource languages such as Urdu. Existing automated fact-checking solutions overwhelmingly focus on English, leaving a significant gap for the 200+ million Urdu speakers worldwide. In this work, we introduce UrduFactCheck, the first comprehensive, modular fact-checking framework specifically tailored for Urdu. Our system features a dynamic, multi-strategy evidence retrieval pipeline that combines monolingual and translation-based approaches to address the scarcity of high-quality Urdu evidence. We curate and release two new hand-annotated benchmarks: UrduFactBench for claim verification and UrduFactQA for evaluating LLM factuality. Extensive experiments demonstrate that UrduFactCheck, particularly its translation-augmented variants, consistently outperforms baselines and open-source alternatives on multiple metrics. We further benchmark twelve state-of-the-art (SOTA) LLMs on factual question answering in Urdu, highlighting persistent gaps between proprietary and open-source models. UrduFactCheck's code and datasets are open-sourced and publicly available at https://github.com/mbzuai-nlp/UrduFactCheck. 9 authors · May 20, 2025