Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeLearning to Summarize from LLM-generated Feedback
Developing effective text summarizers remains a challenge due to issues like hallucinations, key information omissions, and verbosity in LLM-generated summaries. This work explores using LLM-generated feedback to improve summary quality by aligning the summaries with human preferences for faithfulness, completeness, and conciseness. We introduce FeedSum, a large-scale dataset containing multi-dimensional LLM feedback on summaries of varying quality across diverse domains. Our experiments show how feedback quality, dimensionality, and granularity influence preference learning, revealing that high-quality, multi-dimensional, fine-grained feedback significantly improves summary generation. We also compare two methods for using this feedback: supervised fine-tuning and direct preference optimization. Finally, we introduce SummLlama3-8b, a model that outperforms the nearly 10x larger Llama3-70b-instruct in generating human-preferred summaries, demonstrating that smaller models can achieve superior performance with appropriate training. The full dataset will be released soon. The SummLlama3-8B model is now available at https://huggingface.co/DISLab/SummLlama3-8B.
Learning to Verify Summary Facts with Fine-Grained LLM Feedback
Training automatic summary fact verifiers often faces the challenge of a lack of human-labeled data. In this paper, we explore alternative way of leveraging Large Language Model (LLM) generated feedback to address the inherent limitation of using human-labeled data. We introduce FineSumFact, a large-scale dataset containing fine-grained factual feedback on summaries. We employ 10 distinct LLMs for diverse summary generation and Llama-3-70B-Instruct for feedback. We utilize this dataset to fine-tune the lightweight open-source model Llama-3-8B-Instruct, optimizing resource efficiency while maintaining high performance. Our experimental results reveal that the model trained on extensive LLM-generated datasets surpasses that trained on smaller human-annotated datasets when evaluated using human-generated test sets. Fine-tuning fact verification models with LLM feedback can be more effective and cost-efficient than using human feedback. The dataset is available at https://github.com/DISL-Lab/FineSumFact.
Transcoders Find Interpretable LLM Feature Circuits
A key goal in mechanistic interpretability is circuit analysis: finding sparse subgraphs of models corresponding to specific behaviors or capabilities. However, MLP sublayers make fine-grained circuit analysis on transformer-based language models difficult. In particular, interpretable features -- such as those found by sparse autoencoders (SAEs) -- are typically linear combinations of extremely many neurons, each with its own nonlinearity to account for. Circuit analysis in this setting thus either yields intractably large circuits or fails to disentangle local and global behavior. To address this we explore transcoders, which seek to faithfully approximate a densely activating MLP layer with a wider, sparsely-activating MLP layer. We successfully train transcoders on language models with 120M, 410M, and 1.4B parameters, and find them to perform at least on par with SAEs in terms of sparsity, faithfulness, and human-interpretability. We then introduce a novel method for using transcoders to perform weights-based circuit analysis through MLP sublayers. The resulting circuits neatly factorize into input-dependent and input-invariant terms. Finally, we apply transcoders to reverse-engineer unknown circuits in the model, and we obtain novel insights regarding the greater-than circuit in GPT2-small. Our results suggest that transcoders can prove effective in decomposing model computations involving MLPs into interpretable circuits. Code is available at https://github.com/jacobdunefsky/transcoder_circuits.
Semantic Routing: Exploring Multi-Layer LLM Feature Weighting for Diffusion Transformers
Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
GLEAN: Generalized Category Discovery with Diverse and Quality-Enhanced LLM Feedback
Generalized Category Discovery (GCD) is a practical and challenging open-world task that aims to recognize both known and novel categories in unlabeled data using limited labeled data from known categories. Due to the lack of supervision, previous GCD methods face significant challenges, such as difficulty in rectifying errors for confusing instances, and inability to effectively uncover and leverage the semantic meanings of discovered clusters. Therefore, additional annotations are usually required for real-world applicability. However, human annotation is extremely costly and inefficient. To address these issues, we propose GLEAN, a unified framework for generalized category discovery that actively learns from diverse and quality-enhanced LLM feedback. Our approach leverages three different types of LLM feedback to: (1) improve instance-level contrastive features, (2) generate category descriptions, and (3) align uncertain instances with LLM-selected category descriptions. Extensive experiments demonstrate the superior performance of \MethodName over state-of-the-art models across diverse datasets, metrics, and supervision settings. Our code is available at https://github.com/amazon-science/Glean.
InteractAnything: Zero-shot Human Object Interaction Synthesis via LLM Feedback and Object Affordance Parsing
Recent advances in 3D human-aware generation have made significant progress. However, existing methods still struggle with generating novel Human Object Interaction (HOI) from text, particularly for open-set objects. We identify three main challenges of this task: precise human-object relation reasoning, affordance parsing for any object, and detailed human interaction pose synthesis aligning description and object geometry. In this work, we propose a novel zero-shot 3D HOI generation framework without training on specific datasets, leveraging the knowledge from large-scale pre-trained models. Specifically, the human-object relations are inferred from large language models (LLMs) to initialize object properties and guide the optimization process. Then we utilize a pre-trained 2D image diffusion model to parse unseen objects and extract contact points, avoiding the limitations imposed by existing 3D asset knowledge. The initial human pose is generated by sampling multiple hypotheses through multi-view SDS based on the input text and object geometry. Finally, we introduce a detailed optimization to generate fine-grained, precise, and natural interaction, enforcing realistic 3D contact between the 3D object and the involved body parts, including hands in grasping. This is achieved by distilling human-level feedback from LLMs to capture detailed human-object relations from the text instruction. Extensive experiments validate the effectiveness of our approach compared to prior works, particularly in terms of the fine-grained nature of interactions and the ability to handle open-set 3D objects.
Time-RA: Towards Time Series Reasoning for Anomaly with LLM Feedback
Time series anomaly detection is critical across various domains, yet current approaches often limit analysis to mere binary anomaly classification without detailed categorization or further explanatory reasoning. To address these limitations, we propose a novel task, Time-series Reasoning for Anomaly (Time-RA) that transforms classical time series anomaly detection from a discriminative into a generative, reasoning-intensive task leveraging Large Language Models (LLMs). Also, we introduce the first real-world multimodal benchmark dataset, RATs40K, explicitly annotated for anomaly reasoning, comprising approximately 40,000 samples across 10 real-world domains. Each sample includes numeric time series data, contextual text information, and visual representations, each annotated with fine-grained categories (14 types for univariate anomalies and 6 for multivariate anomalies) and structured explanatory reasoning. We develop a sophisticated annotation framework utilizing ensemble-generated labels refined through GPT-4-driven feedback, ensuring accuracy and interpretability. Extensive benchmarking of LLMs and multimodal LLMs demonstrates the capabilities and limitations of current models, highlighting the critical role of supervised fine-tuning. Our dataset and task pave the way for significant advancements in interpretable time series anomaly detection and reasoning. The code (https://github.com/yyysjz1997/Time-RA) and dataset (https://huggingface.co/datasets/Time-RA/RATs40K) have been fully open-sourced to support and accelerate future research in this area.
More Samples or More Prompts? Exploring Effective In-Context Sampling for LLM Few-Shot Prompt Engineering
While most existing works on LLM prompting techniques focus only on how to select a better set of data samples inside one single prompt input (In-Context Learning or ICL), why can not we design and leverage multiple prompts together to further improve the LLM's performance? In this work, we propose In-Context Sampling (ICS), a low-resource LLM prompting technique to produce confident predictions by optimizing the construction of multiple ICL prompt inputs. Extensive experiments with three open-source LLMs (FlanT5-XL, Mistral-7B, and Mixtral-8x7B) on four NLI datasets (e-SNLI, Multi-NLI, ANLI, and Contract-NLI) and one QA dataset (CommonsenseQA) illustrate that ICS can consistently enhance LLMs' performance. An in-depth evaluation with three data similarity-based ICS strategies suggests that these strategies can further elevate LLM's performance, which sheds light on a new yet promising future research direction.
ToolDreamer: Instilling LLM Reasoning Into Tool Retrievers
Tool calling has become increasingly popular for Large Language Models (LLMs). However, for large tool sets, the resulting tokens would exceed the LLM's context window limit, making it impossible to include every tool. Hence, an external retriever is used to provide LLMs with the most relevant tools for a query. Existing retrieval models rank tools based on the similarity between a user query and a tool description (TD). This leads to suboptimal retrieval as user requests are often poorly aligned with the language of TD. To remedy the issue, we propose ToolDreamer, a framework to condition retriever models to fetch tools based on hypothetical (synthetic) TD generated using an LLM, i.e., description of tools that the LLM feels will be potentially useful for the query. The framework enables a more natural alignment between queries and tools within the language space of TD's. We apply ToolDreamer on the ToolRet dataset and show that our method improves the performance of sparse and dense retrievers with and without training, thus showcasing its flexibility. Through our proposed framework, our aim is to offload a portion of the reasoning burden to the retriever so that the LLM may effectively handle a large collection of tools without inundating its context window.
The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents synthetic Preference Optimization (PO) datasets generated using multi-agent workflows and evaluates the effectiveness and potential of these workflows in the dataset generation process. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.
EDGE-LLM: Enabling Efficient Large Language Model Adaptation on Edge Devices via Layerwise Unified Compression and Adaptive Layer Tuning and Voting
Efficient adaption of large language models (LLMs) on edge devices is essential for applications requiring continuous and privacy-preserving adaptation and inference. However, existing tuning techniques fall short because of the high computation and memory overheads. To this end, we introduce a computation- and memory-efficient LLM tuning framework, called Edge-LLM, to facilitate affordable and effective LLM adaptation on edge devices. Specifically, Edge-LLM features three core components: (1) a layer-wise unified compression (LUC) technique to reduce the computation overhead by generating layer-wise pruning sparsity and quantization bit-width policies, (2) an adaptive layer tuning and voting scheme to reduce the memory overhead by reducing the backpropagation depth, and (3) a complementary hardware scheduling strategy to handle the irregular computation patterns introduced by LUC and adaptive layer tuning, thereby achieving efficient computation and data movements. Extensive experiments demonstrate that Edge-LLM achieves a 2.92x speed up and a 4x memory overhead reduction as compared to vanilla tuning methods with comparable task accuracy. Our code is available at https://github.com/GATECH-EIC/Edge-LLM
ProRefine: Inference-time Prompt Refinement with Textual Feedback
Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, are becoming increasingly prevalent. However, these workflows often suffer from error propagation and sub-optimal performance, largely due to poorly designed prompts that fail to effectively guide individual agents. This is a critical problem because it limits the reliability and scalability of these powerful systems. We introduce ProRefine, an innovative inference-time prompt optimization method that leverages textual feedback from large language models (LLMs) to address this challenge. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to match the performance of larger ones, highlighting its potential for efficient and scalable AI deployment, and democratizing access to high-performing AI.
Online Intrinsic Rewards for Decision Making Agents from Large Language Model Feedback
Automatically synthesizing dense rewards from natural language descriptions is a promising paradigm in reinforcement learning (RL), with applications to sparse reward problems, open-ended exploration, and hierarchical skill design. Recent works have made promising steps by exploiting the prior knowledge of large language models (LLMs). However, these approaches suffer from important limitations: they are either not scalable to problems requiring billions of environment samples, due to requiring LLM annotations for each observation, or they require a diverse offline dataset, which may not exist or be impossible to collect. In this work, we address these limitations through a combination of algorithmic and systems-level contributions. We propose \oni, a distributed architecture that simultaneously learns an RL policy and an intrinsic reward function using LLM feedback. Our approach annotates the agent's collected experience via an asynchronous LLM server, which is then distilled into an intrinsic reward model. We explore a range of algorithmic choices for reward modeling with varying complexity, including hashing, classification, and ranking models. By studying their relative tradeoffs, we shed light on questions regarding intrinsic reward design for sparse reward problems. Our approach achieves state-of-the-art performance across a range of challenging, sparse reward tasks from the NetHack Learning Environment in a simple unified process, solely using the agent's gathered experience, without requiring external datasets. We make our code available at https://github.com/facebookresearch/oni.
Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decode
Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions and has become popular with the rise of multimodal large models (MLLMs). While MLLMs excel in semantic understanding, their token-generation paradigm struggles with pixel-level dense prediction. Existing RES methods either couple MLLMs with the parameter-heavy Segment Anything Model (SAM) with 632M network parameters or adopt SAM-free lightweight pipelines that sacrifice accuracy. To address the trade-off between performance and cost, we specifically propose MLLMSeg, a novel framework that fully exploits the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. Besides, we propose a detail-enhanced and semantic-consistent feature fusion module (DSFF) that fully integrates the detail-related visual feature with the semantic-related feature output by the large language model (LLM) of MLLM. Finally, we establish a light-weight mask decoder with only 34M network parameters that optimally leverages detailed spatial features from the visual encoder and semantic features from the LLM to achieve precise mask prediction. Extensive experiments demonstrate that our method generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost. Code is available at https://github.com/jcwang0602/MLLMSeg.
Learning to Retrieve In-Context Examples for Large Language Models
Large language models (LLMs) have demonstrated their ability to learn in-context, allowing them to perform various tasks based on a few input-output examples. However, the effectiveness of in-context learning is heavily reliant on the quality of the selected examples. In this paper, we propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples for LLMs. Our framework initially trains a reward model based on LLM feedback to evaluate the quality of candidate examples, followed by knowledge distillation to train a bi-encoder based dense retriever. Our experiments on a suite of 30 tasks demonstrate that our framework significantly enhances in-context learning performance. Furthermore, we show the generalization ability of our framework to unseen tasks during training. An in-depth analysis reveals that our model improves performance by retrieving examples with similar patterns, and the gains are consistent across LLMs of varying sizes.
$Se^2$: Sequential Example Selection for In-Context Learning
The remarkable capability of large language models (LLMs) for in-context learning (ICL) needs to be activated by demonstration examples. Prior work has extensively explored the selection of examples for ICL, predominantly following the "select then organize" paradigm, such approaches often neglect the internal relationships between examples and exist an inconsistency between the training and inference. In this paper, we formulate the problem as a sequential selection problem and introduce Se^2, a sequential-aware method that leverages the LLM's feedback on varying context, aiding in capturing inter-relationships and sequential information among examples, significantly enriching the contextuality and relevance of ICL prompts. Meanwhile, we utilize beam search to seek and construct example sequences, enhancing both quality and diversity. Extensive experiments across 23 NLP tasks from 8 distinct categories illustrate that Se^2 markedly surpasses competitive baselines and achieves 42% relative improvement over random selection. Further in-depth analysis show the effectiveness of proposed strategies, highlighting Se^2's exceptional stability and adaptability across various scenarios. Our code will be released to facilitate future research.
LLM4GEN: Leveraging Semantic Representation of LLMs for Text-to-Image Generation
Diffusion Models have exhibited substantial success in text-to-image generation. However, they often encounter challenges when dealing with complex and dense prompts that involve multiple objects, attribute binding, and long descriptions. This paper proposes a framework called LLM4GEN, which enhances the semantic understanding ability of text-to-image diffusion models by leveraging the semantic representation of Large Language Models (LLMs). Through a specially designed Cross-Adapter Module (CAM) that combines the original text features of text-to-image models with LLM features, LLM4GEN can be easily incorporated into various diffusion models as a plug-and-play component and enhances text-to-image generation. Additionally, to facilitate the complex and dense prompts semantic understanding, we develop a LAION-refined dataset, consisting of 1 million (M) text-image pairs with improved image descriptions. We also introduce DensePrompts which contains 7,000 dense prompts to provide a comprehensive evaluation for the text-to-image generation task. With just 10\% of the training data required by recent ELLA, LLM4GEN significantly improves the semantic alignment of SD1.5 and SDXL, demonstrating increases of 7.69\% and 9.60\% in color on T2I-CompBench, respectively. The extensive experiments on DensePrompts also demonstrate that LLM4GEN surpasses existing state-of-the-art models in terms of sample quality, image-text alignment, and human evaluation. The project website is at: magenta{https://xiaobul.github.io/LLM4GEN/}
Model as a Game: On Numerical and Spatial Consistency for Generative Games
Recent advances in generative models have significantly impacted game generation. However, despite producing high-quality graphics and adequately receiving player input, existing models often fail to maintain fundamental game properties such as numerical and spatial consistency. Numerical consistency ensures gameplay mechanics correctly reflect score changes and other quantitative elements, while spatial consistency prevents jarring scene transitions, providing seamless player experiences. In this paper, we revisit the paradigm of generative games to explore what truly constitutes a Model as a Game (MaaG) with a well-developed mechanism. We begin with an empirical study on ``Traveler'', a 2D game created by an LLM featuring minimalist rules yet challenging generative models in maintaining consistency. Based on the DiT architecture, we design two specialized modules: (1) a numerical module that integrates a LogicNet to determine event triggers, with calculations processed externally as conditions for image generation; and (2) a spatial module that maintains a map of explored areas, retrieving location-specific information during generation and linking new observations to ensure continuity. Experiments across three games demonstrate that our integrated modules significantly enhance performance on consistency metrics compared to baselines, while incurring minimal time overhead during inference.
Retrieval-augmented Large Language Models for Financial Time Series Forecasting
Stock movement prediction, a fundamental task in financial time-series forecasting, requires identifying and retrieving critical influencing factors from vast amounts of time-series data. However, existing text-trained or numeric similarity-based retrieval methods fall short in handling complex financial analysis. To address this, we propose the first retrieval-augmented generation (RAG) framework for financial time-series forecasting, featuring three key innovations: a fine-tuned 1B parameter large language model (StockLLM) as the backbone, a novel candidate selection method leveraging LLM feedback, and a training objective that maximizes similarity between queries and historically significant sequences. This enables our retriever, FinSeer, to uncover meaningful patterns while minimizing noise in complex financial data. We also construct new datasets integrating financial indicators and historical stock prices to train FinSeer and ensure robust evaluation. Experimental results demonstrate that our RAG framework outperforms bare StockLLM and random retrieval, highlighting its effectiveness, while FinSeer surpasses existing retrieval methods, achieving an 8\% higher accuracy on BIGDATA22 and retrieving more impactful sequences. This work underscores the importance of tailored retrieval models in financial forecasting and provides a novel framework for future research.
SAI: Solving AI Tasks with Systematic Artificial Intelligence in Communication Network
In the rapid development of artificial intelligence, solving complex AI tasks is a crucial technology in intelligent mobile networks. Despite the good performance of specialized AI models in intelligent mobile networks, they are unable to handle complicated AI tasks. To address this challenge, we propose Systematic Artificial Intelligence (SAI), which is a framework designed to solve AI tasks by leveraging Large Language Models (LLMs) and JSON-format intent-based input to connect self-designed model library and database. Specifically, we first design a multi-input component, which simultaneously integrates Large Language Models (LLMs) and JSON-format intent-based inputs to fulfill the diverse intent requirements of different users. In addition, we introduce a model library module based on model cards which employ model cards to pairwise match between different modules for model composition. Model cards contain the corresponding model's name and the required performance metrics. Then when receiving user network requirements, we execute each subtask for multiple selected model combinations and provide output based on the execution results and LLM feedback. By leveraging the language capabilities of LLMs and the abundant AI models in the model library, SAI can complete numerous complex AI tasks in the communication network, achieving impressive results in network optimization, resource allocation, and other challenging tasks.
Efficient Machine Translation Corpus Generation: Integrating Human-in-the-Loop Post-Editing with Large Language Models
This paper introduces an advanced methodology for machine translation (MT) corpus generation, integrating semi-automated, human-in-the-loop post-editing with large language models (LLMs) to enhance efficiency and translation quality. Building upon previous work that utilized real-time training of a custom MT quality estimation metric, this system incorporates novel LLM features such as Enhanced Translation Synthesis and Assisted Annotation Analysis, which improve initial translation hypotheses and quality assessments, respectively. Additionally, the system employs LLM-Driven Pseudo Labeling and a Translation Recommendation System to reduce human annotator workload in specific contexts. These improvements not only retain the original benefits of cost reduction and enhanced post-edit quality but also open new avenues for leveraging cutting-edge LLM advancements. The project's source code is available for community use, promoting collaborative developments in the field. The demo video can be accessed here.
VidCompress: Memory-Enhanced Temporal Compression for Video Understanding in Large Language Models
Video-based multimodal large language models (Video-LLMs) possess significant potential for video understanding tasks. However, most Video-LLMs treat videos as a sequential set of individual frames, which results in insufficient temporal-spatial interaction that hinders fine-grained comprehension and difficulty in processing longer videos due to limited visual token capacity. To address these challenges, we propose VidCompress, a novel Video-LLM featuring memory-enhanced temporal compression. VidCompress employs a dual-compressor approach: a memory-enhanced compressor captures both short-term and long-term temporal relationships in videos and compresses the visual tokens using a multiscale transformer with a memory-cache mechanism, while a text-perceived compressor generates condensed visual tokens by utilizing Q-Former and integrating temporal contexts into query embeddings with cross attention. Experiments on several VideoQA datasets and comprehensive benchmarks demonstrate that VidCompress efficiently models complex temporal-spatial relations and significantly outperforms existing Video-LLMs.
LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models
This study focuses on using large language models (LLMs) as a planner for embodied agents that can follow natural language instructions to complete complex tasks in a visually-perceived environment. The high data cost and poor sample efficiency of existing methods hinders the development of versatile agents that are capable of many tasks and can learn new tasks quickly. In this work, we propose a novel method, LLM-Planner, that harnesses the power of large language models to do few-shot planning for embodied agents. We further propose a simple but effective way to enhance LLMs with physical grounding to generate and update plans that are grounded in the current environment. Experiments on the ALFRED dataset show that our method can achieve very competitive few-shot performance: Despite using less than 0.5% of paired training data, LLM-Planner achieves competitive performance with recent baselines that are trained using the full training data. Existing methods can barely complete any task successfully under the same few-shot setting. Our work opens the door for developing versatile and sample-efficient embodied agents that can quickly learn many tasks. Website: https://dki-lab.github.io/LLM-Planner
SCALEFeedback: A Large-Scale Dataset of Synthetic Computer Science Assignments for LLM-generated Educational Feedback Research
Using LLMs to give educational feedback to students for their assignments has attracted much attention in the AI in Education field. Yet, there is currently no large-scale open-source dataset of student assignments that includes detailed assignment descriptions, rubrics, and student submissions across various courses. As a result, research on generalisable methodology for automatic generation of effective and responsible educational feedback remains limited. In the current study, we constructed a large-scale dataset of Synthetic Computer science Assignments for LLM-generated Educational Feedback research (SCALEFeedback). We proposed a Sophisticated Assignment Mimicry (SAM) framework to generate the synthetic dataset by one-to-one LLM-based imitation from real assignment descriptions, student submissions to produce their synthetic versions. Our open-source dataset contains 10,000 synthetic student submissions spanning 155 assignments across 59 university-level computer science courses. Our synthetic submissions achieved BERTScore F1 0.84, PCC of 0.62 for assignment marks and 0.85 for length, compared to the corresponding real-world assignment dataset, while ensuring perfect protection of student private information. All these results of our SAM framework outperformed results of a naive mimicry method baseline. The LLM-generated feedback for our synthetic assignments demonstrated the same level of effectiveness compared to that of real-world assignment dataset. Our research showed that one-to-one LLM imitation is a promising method for generating open-source synthetic educational datasets that preserve the original dataset's semantic meaning and student data distribution, while protecting student privacy and institutional copyright. SCALEFeedback enhances our ability to develop LLM-based generalisable methods for offering high-quality, automated educational feedback in a scalable way.
Improving Audio Captioning Models with Fine-grained Audio Features, Text Embedding Supervision, and LLM Mix-up Augmentation
Automated audio captioning (AAC) aims to generate informative descriptions for various sounds from nature and/or human activities. In recent years, AAC has quickly attracted research interest, with state-of-the-art systems now relying on a sequence-to-sequence (seq2seq) backbone powered by strong models such as Transformers. Following the macro-trend of applied machine learning research, in this work, we strive to improve the performance of seq2seq AAC models by extensively leveraging pretrained models and large language models (LLMs). Specifically, we utilize BEATs to extract fine-grained audio features. Then, we employ Instructor LLM to fetch text embeddings of captions, and infuse their language-modality knowledge into BEATs audio features via an auxiliary InfoNCE loss function. Moreover, we propose a novel data augmentation method that uses ChatGPT to produce caption mix-ups (i.e., grammatical and compact combinations of two captions) which, together with the corresponding audio mixtures, increase not only the amount but also the complexity and diversity of training data. During inference, we propose to employ nucleus sampling and a hybrid reranking algorithm, which has not been explored in AAC research. Combining our efforts, our model achieves a new state-of-the-art 32.6 SPIDEr-FL score on the Clotho evaluation split, and wins the 2023 DCASE AAC challenge.
A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops
Agentic AI systems use specialized agents to handle tasks within complex workflows, enabling automation and efficiency. However, optimizing these systems often requires labor-intensive, manual adjustments to refine roles, tasks, and interactions. This paper introduces a framework for autonomously optimizing Agentic AI solutions across industries, such as NLP-driven enterprise applications. The system employs agents for Refinement, Execution, Evaluation, Modification, and Documentation, leveraging iterative feedback loops powered by an LLM (Llama 3.2-3B). The framework achieves optimal performance without human input by autonomously generating and testing hypotheses to improve system configurations. This approach enhances scalability and adaptability, offering a robust solution for real-world applications in dynamic environments. Case studies across diverse domains illustrate the transformative impact of this framework, showcasing significant improvements in output quality, relevance, and actionability. All data for these case studies, including original and evolved agent codes, along with their outputs, are here: https://anonymous.4open.science/r/evolver-1D11/
Can large language models provide useful feedback on research papers? A large-scale empirical analysis
Expert feedback lays the foundation of rigorous research. However, the rapid growth of scholarly production and intricate knowledge specialization challenge the conventional scientific feedback mechanisms. High-quality peer reviews are increasingly difficult to obtain. Researchers who are more junior or from under-resourced settings have especially hard times getting timely feedback. With the breakthrough of large language models (LLM) such as GPT-4, there is growing interest in using LLMs to generate scientific feedback on research manuscripts. However, the utility of LLM-generated feedback has not been systematically studied. To address this gap, we created an automated pipeline using GPT-4 to provide comments on the full PDFs of scientific papers. We evaluated the quality of GPT-4's feedback through two large-scale studies. We first quantitatively compared GPT-4's generated feedback with human peer reviewer feedback in 15 Nature family journals (3,096 papers in total) and the ICLR machine learning conference (1,709 papers). The overlap in the points raised by GPT-4 and by human reviewers (average overlap 30.85% for Nature journals, 39.23% for ICLR) is comparable to the overlap between two human reviewers (average overlap 28.58% for Nature journals, 35.25% for ICLR). The overlap between GPT-4 and human reviewers is larger for the weaker papers. We then conducted a prospective user study with 308 researchers from 110 US institutions in the field of AI and computational biology to understand how researchers perceive feedback generated by our GPT-4 system on their own papers. Overall, more than half (57.4%) of the users found GPT-4 generated feedback helpful/very helpful and 82.4% found it more beneficial than feedback from at least some human reviewers. While our findings show that LLM-generated feedback can help researchers, we also identify several limitations.
Combating Partial Perception Deficit in Autonomous Driving with Multimodal LLM Commonsense
Partial perception deficits can compromise autonomous vehicle safety by disrupting environmental understanding. Current protocols typically respond with immediate stops or minimal-risk maneuvers, worsening traffic flow and lacking flexibility for rare driving scenarios. In this paper, we propose LLM-RCO, a framework leveraging large language models to integrate human-like driving commonsense into autonomous systems facing perception deficits. LLM-RCO features four key modules: hazard inference, short-term motion planner, action condition verifier, and safety constraint generator. These modules interact with the dynamic driving environment, enabling proactive and context-aware control actions to override the original control policy of autonomous agents. To improve safety in such challenging conditions, we construct DriveLM-Deficit, a dataset of 53,895 video clips featuring deficits of safety-critical objects, complete with annotations for LLM-based hazard inference and motion planning fine-tuning. Extensive experiments in adverse driving conditions with the CARLA simulator demonstrate that systems equipped with LLM-RCO significantly improve driving performance, highlighting its potential for enhancing autonomous driving resilience against adverse perception deficits. Our results also show that LLMs fine-tuned with DriveLM-Deficit can enable more proactive movements instead of conservative stops in the context of perception deficits.
LLM-KT: A Versatile Framework for Knowledge Transfer from Large Language Models to Collaborative Filtering
We present LLM-KT, a flexible framework designed to enhance collaborative filtering (CF) models by seamlessly integrating LLM (Large Language Model)-generated features. Unlike existing methods that rely on passing LLM-generated features as direct inputs, our framework injects these features into an intermediate layer of any CF model, allowing the model to reconstruct and leverage the embeddings internally. This model-agnostic approach works with a wide range of CF models without requiring architectural changes, making it adaptable to various recommendation scenarios. Our framework is built for easy integration and modification, providing researchers and developers with a powerful tool for extending CF model capabilities through efficient knowledge transfer. We demonstrate its effectiveness through experiments on the MovieLens and Amazon datasets, where it consistently improves baseline CF models. Experimental studies showed that LLM-KT is competitive with the state-of-the-art methods in context-aware settings but can be applied to a broader range of CF models than current approaches.
Applications of Large Language Model Reasoning in Feature Generation
Large Language Models (LLMs) have revolutionized natural language processing through their state of art reasoning capabilities. This paper explores the convergence of LLM reasoning techniques and feature generation for machine learning tasks. We examine four key reasoning approaches: Chain of Thought, Tree of Thoughts, Retrieval-Augmented Generation, and Thought Space Exploration. Our analysis reveals how these approaches can be used to identify effective feature generation rules without having to manually specify search spaces. The paper categorizes LLM-based feature generation methods across various domains including finance, healthcare, and text analytics. LLMs can extract key information from clinical notes and radiology reports in healthcare, by enabling more efficient data utilization. In finance, LLMs facilitate text generation, summarization, and entity extraction from complex documents. We analyze evaluation methodologies for assessing feature quality and downstream performance, with particular attention to OCTree's decision tree reasoning approach that provides language-based feedback for iterative improvements. Current challenges include hallucination, computational efficiency, and domain adaptation. As of March 2025, emerging approaches include inference-time compute scaling, reinforcement learning, and supervised fine-tuning with model distillation. Future directions point toward multimodal feature generation, self-improving systems, and neuro-symbolic approaches. This paper provides a detailed overview of an emerging field that promises to automate and enhance feature engineering through language model reasoning.
MaestroMotif: Skill Design from Artificial Intelligence Feedback
Describing skills in natural language has the potential to provide an accessible way to inject human knowledge about decision-making into an AI system. We present MaestroMotif, a method for AI-assisted skill design, which yields high-performing and adaptable agents. MaestroMotif leverages the capabilities of Large Language Models (LLMs) to effectively create and reuse skills. It first uses an LLM's feedback to automatically design rewards corresponding to each skill, starting from their natural language description. Then, it employs an LLM's code generation abilities, together with reinforcement learning, for training the skills and combining them to implement complex behaviors specified in language. We evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning Environment (NLE), demonstrating that it surpasses existing approaches in both performance and usability.
Collab-RAG: Boosting Retrieval-Augmented Generation for Complex Question Answering via White-Box and Black-Box LLM Collaboration
Retrieval-Augmented Generation (RAG) systems often struggle to handle multi-hop question-answering tasks accurately due to irrelevant context retrieval and limited complex reasoning capabilities. We introduce Collab-RAG, a collaborative training framework that leverages mutual enhancement between a white-box small language model (SLM) and a blackbox large language model (LLM) for RAG. Specifically, the SLM decomposes complex queries into simpler sub-questions, thus enhancing the accuracy of the retrieval and facilitating more effective reasoning by the black-box LLM. Concurrently, the black-box LLM provides feedback signals to improve the SLM's decomposition capability. We observe that Collab-RAG relies solely on supervision from an affordable black-box LLM without additional distillation from frontier LLMs, yet demonstrates strong generalization across multiple black-box LLMs. Experimental evaluations across five multi-hop QA datasets demonstrate that Collab-RAG substantially outperforms existing black-box-only and SLM fine-tuning baselines by 1.8%-14.2% on average. In particular, our fine-tuned 3B SLM surpasses a frozen 32B LLM in question decomposition, highlighting the efficiency of Collab-RAG in improving reasoning and retrieval for complex questions. The code of Collab-RAG is available on https://github.com/ritaranx/Collab-RAG/.
Steered Generation via Gradient Descent on Sparse Features
Large language models (LLMs) encode a diverse range of linguistic features within their latent representations, which can be harnessed to steer their output toward specific target characteristics. In this paper, we modify the internal structure of LLMs by training sparse autoencoders to learn a sparse representation of the query embedding, allowing precise control over the model's attention distribution. We demonstrate that manipulating this sparse representation effectively transforms the output toward different stylistic and cognitive targets. Specifically, in an educational setting, we show that the cognitive complexity of LLM-generated feedback can be systematically adjusted by modifying the encoded query representation at a specific layer. To achieve this, we guide the learned sparse embedding toward the representation of samples from the desired cognitive complexity level, using gradient-based optimization in the latent space.
Who's Your Judge? On the Detectability of LLM-Generated Judgments
Large Language Model (LLM)-based judgments leverage powerful LLMs to efficiently evaluate candidate content and provide judgment scores. However, the inherent biases and vulnerabilities of LLM-generated judgments raise concerns, underscoring the urgent need for distinguishing them in sensitive scenarios like academic peer reviewing. In this work, we propose and formalize the task of judgment detection and systematically investigate the detectability of LLM-generated judgments. Unlike LLM-generated text detection, judgment detection relies solely on judgment scores and candidates, reflecting real-world scenarios where textual feedback is often unavailable in the detection process. Our preliminary analysis shows that existing LLM-generated text detection methods perform poorly given their incapability to capture the interaction between judgment scores and candidate content -- an aspect crucial for effective judgment detection. Inspired by this, we introduce J-Detector, a lightweight and transparent neural detector augmented with explicitly extracted linguistic and LLM-enhanced features to link LLM judges' biases with candidates' properties for accurate detection. Experiments across diverse datasets demonstrate the effectiveness of J-Detector and show how its interpretability enables quantifying biases in LLM judges. Finally, we analyze key factors affecting the detectability of LLM-generated judgments and validate the practical utility of judgment detection in real-world scenarios.
The FM Agent
Large language models (LLMs) are catalyzing the development of autonomous AI research agents for scientific and engineering discovery. We present FM Agent, a novel and general-purpose multi-agent framework that leverages a synergistic combination of LLM-based reasoning and large-scale evolutionary search to address complex real-world challenges. The core of FM Agent integrates several key innovations: 1) a cold-start initialization phase incorporating expert guidance, 2) a novel evolutionary sampling strategy for iterative optimization, 3) domain-specific evaluators that combine correctness, effectiveness, and LLM-supervised feedback, and 4) a distributed, asynchronous execution infrastructure built on Ray. Demonstrating broad applicability, our system has been evaluated across diverse domains, including operations research, machine learning, GPU kernel optimization, and classical mathematical problems. FM Agent reaches state-of-the-art results autonomously, without human interpretation or tuning -- 1976.3 on ALE-Bench (+5.2\%), 43.56\% on MLE-Bench (+4.0pp), up to 20x speedups on KernelBench, and establishes new state-of-the-art(SOTA) results on several classical mathematical problems. Beyond academic benchmarks, FM Agent shows considerable promise for both large-scale enterprise R\&D workflows and fundamental scientific research, where it can accelerate innovation, automate complex discovery processes, and deliver substantial engineering and scientific advances with broader societal impact.
Large Language Models as Attribution Regularizers for Efficient Model Training
Large Language Models (LLMs) have demonstrated remarkable performance across diverse domains. However, effectively leveraging their vast knowledge for training smaller downstream models remains an open challenge, especially in domains like tabular data learning, where simpler models are often preferred due to interpretability and efficiency. In this paper, we introduce a novel yet straightforward method for incorporating LLM-generated global task feature attributions into the training process of smaller networks. Specifically, we propose an attribution-matching regularization term that aligns the training dynamics of the smaller model with the insights provided by the LLM. By doing so, our approach yields superior performance in few-shot learning scenarios. Notably, our method requires only black-box API access to the LLM, making it easy to integrate into existing training pipelines with minimal computational overhead. Furthermore, we demonstrate how this method can be used to address common issues in real-world datasets, such as skewness and bias. By integrating high-level knowledge from LLMs, our approach improves generalization, even when training data is limited or imbalanced. We validate its effectiveness through extensive experiments across multiple tasks, demonstrating improved learning efficiency and model robustness.
Generating Grounded Responses to Counter Misinformation via Learning Efficient Fine-Grained Critiques
Fake news and misinformation poses a significant threat to society, making efficient mitigation essential. However, manual fact-checking is costly and lacks scalability. Large Language Models (LLMs) offer promise in automating counter-response generation to mitigate misinformation, but a critical challenge lies in their tendency to hallucinate non-factual information. Existing models mainly rely on LLM self-feedback to reduce hallucination, but this approach is computationally expensive. In this paper, we propose MisMitiFact, Misinformation Mitigation grounded in Facts, an efficient framework for generating fact-grounded counter-responses at scale. MisMitiFact generates simple critique feedback to refine LLM outputs, ensuring responses are grounded in evidence. We develop lightweight, fine-grained critique models trained on data sourced from readily available fact-checking sites to identify and correct errors in key elements such as numerals, entities, and topics in LLM generations. Experiments show that MisMitiFact generates counter-responses of comparable quality to LLMs' self-feedback while using significantly smaller critique models. Importantly, it achieves ~5x increase in feedback generation throughput, making it highly suitable for cost-effective, large-scale misinformation mitigation. Code and LLM prompt templates are at https://github.com/xxfwin/MisMitiFact.
MAgICoRe: Multi-Agent, Iterative, Coarse-to-Fine Refinement for Reasoning
Large Language Models' (LLM) reasoning can be improved using test-time aggregation strategies, i.e., generating multiple samples and voting among generated samples. While these improve performance, they often reach a saturation point. Refinement offers an alternative by using LLM-generated feedback to improve solution quality. However, refinement introduces 3 key challenges: (1) Excessive refinement: Uniformly refining all instances can over-correct and reduce the overall performance. (2) Inability to localize and address errors: LLMs have a limited ability to self-correct and struggle to identify and correct their own mistakes. (3) Insufficient refinement: Deciding how many iterations of refinement are needed is non-trivial, and stopping too soon could leave errors unaddressed. To tackle these issues, we propose MAgICoRe, which avoids excessive refinement by categorizing problem difficulty as easy or hard, solving easy problems with coarse-grained aggregation and hard ones with fine-grained and iterative multi-agent refinement. To improve error localization, we incorporate external step-wise reward model (RM) scores. Moreover, to ensure effective refinement, we employ a multi-agent loop with three agents: Solver, Reviewer (which generates targeted feedback based on step-wise RM scores), and the Refiner (which incorporates feedback). To ensure sufficient refinement, we re-evaluate updated solutions, iteratively initiating further rounds of refinement. We evaluate MAgICoRe on Llama-3-8B and GPT-3.5 and show its effectiveness across 5 math datasets. Even one iteration of MAgICoRe beats Self-Consistency by 3.4%, Best-of-k by 3.2%, and Self-Refine by 4.0% while using less than half the samples. Unlike iterative refinement with baselines, MAgICoRe continues to improve with more iterations. Finally, our ablations highlight the importance of MAgICoRe's RMs and multi-agent communication.
Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models
Video Anomaly Detection (VAD) is crucial for applications such as security surveillance and autonomous driving. However, existing VAD methods provide little rationale behind detection, hindering public trust in real-world deployments. In this paper, we approach VAD with a reasoning framework. Although Large Language Models (LLMs) have shown revolutionary reasoning ability, we find that their direct use falls short of VAD. Specifically, the implicit knowledge pre-trained in LLMs focuses on general context and thus may not apply to every specific real-world VAD scenario, leading to inflexibility and inaccuracy. To address this, we propose AnomalyRuler, a novel rule-based reasoning framework for VAD with LLMs. AnomalyRuler comprises two main stages: induction and deduction. In the induction stage, the LLM is fed with few-shot normal reference samples and then summarizes these normal patterns to induce a set of rules for detecting anomalies. The deduction stage follows the induced rules to spot anomalous frames in test videos. Additionally, we design rule aggregation, perception smoothing, and robust reasoning strategies to further enhance AnomalyRuler's robustness. AnomalyRuler is the first reasoning approach for the one-class VAD task, which requires only few-normal-shot prompting without the need for full-shot training, thereby enabling fast adaption to various VAD scenarios. Comprehensive experiments across four VAD benchmarks demonstrate AnomalyRuler's state-of-the-art detection performance and reasoning ability. AnomalyRuler is open-source and available at: https://github.com/Yuchen413/AnomalyRuler
What You Say = What You Want? Teaching Humans to Articulate Requirements for LLMs
Prompting ChatGPT to achieve complex goals (e.g., creating a customer support chatbot) often demands meticulous prompt engineering, including aspects like fluent writing and chain-of-thought techniques. While emerging prompt optimizers can automatically refine many of these aspects, we argue that clearly conveying customized requirements (e.g., how to handle diverse inputs) remains a human-centric challenge. In this work, we introduce Requirement-Oriented Prompt Engineering (ROPE), a paradigm that focuses human attention on generating clear, complete requirements during prompting. We implement ROPE through an assessment and training suite that provides deliberate practice with LLM-generated feedback. In a study with 30 novices, we show that requirement-focused training doubles novices' prompting performance, significantly outperforming conventional prompt engineering training and prompt optimization. We also demonstrate that high-quality LLM outputs are directly tied to the quality of input requirements. Our work paves the way for more effective task delegation in human-LLM collaborative prompting.
Increasing Diversity While Maintaining Accuracy: Text Data Generation with Large Language Models and Human Interventions
Large language models (LLMs) can be used to generate text data for training and evaluating other models. However, creating high-quality datasets with LLMs can be challenging. In this work, we explore human-AI partnerships to facilitate high diversity and accuracy in LLM-based text data generation. We first examine two approaches to diversify text generation: 1) logit suppression, which minimizes the generation of languages that have already been frequently generated, and 2) temperature sampling, which flattens the token sampling probability. We found that diversification approaches can increase data diversity but often at the cost of data accuracy (i.e., text and labels being appropriate for the target domain). To address this issue, we examined two human interventions, 1) label replacement (LR), correcting misaligned labels, and 2) out-of-scope filtering (OOSF), removing instances that are out of the user's domain of interest or to which no considered label applies. With oracle studies, we found that LR increases the absolute accuracy of models trained with diversified datasets by 14.4%. Moreover, we found that some models trained with data generated with LR interventions outperformed LLM-based few-shot classification. In contrast, OOSF was not effective in increasing model accuracy, implying the need for future work in human-in-the-loop text data generation.
$\infty$Bench: Extending Long Context Evaluation Beyond 100K Tokens
Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose inftyBench, the first LLM benchmark featuring an average data length surpassing 100K tokens. inftyBench comprises synthetic and realistic tasks spanning diverse domains, presented in both English and Chinese. The tasks in inftyBench are designed to require well understanding of long dependencies in contexts, and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. In our experiments, based on inftyBench, we evaluate the state-of-the-art proprietary and open-source LLMs tailored for processing long contexts. The results indicate that existing long context LLMs still require significant advancements to effectively process 100K+ context. We further present three intriguing analyses regarding the behavior of LLMs processing long context.
FailureSensorIQ: A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes
We introduce FailureSensorIQ, a novel Multi-Choice Question-Answering (MCQA) benchmarking system designed to assess the ability of Large Language Models (LLMs) to reason and understand complex, domain-specific scenarios in Industry 4.0. Unlike traditional QA benchmarks, our system focuses on multiple aspects of reasoning through failure modes, sensor data, and the relationships between them across various industrial assets. Through this work, we envision a paradigm shift where modeling decisions are not only data-driven using statistical tools like correlation analysis and significance tests, but also domain-driven by specialized LLMs which can reason about the key contributors and useful patterns that can be captured with feature engineering. We evaluate the Industrial knowledge of over a dozen LLMs-including GPT-4, Llama, and Mistral-on FailureSensorIQ from different lens using Perturbation-Uncertainty-Complexity analysis, Expert Evaluation study, Asset-Specific Knowledge Gap analysis, ReAct agent using external knowledge-bases. Even though closed-source models with strong reasoning capabilities approach expert-level performance, the comprehensive benchmark reveals a significant drop in performance that is fragile to perturbations, distractions, and inherent knowledge gaps in the models. We also provide a real-world case study of how LLMs can drive the modeling decisions on 3 different failure prediction datasets related to various assets. We release: (a) expert-curated MCQA for various industrial assets, (b) FailureSensorIQ benchmark and Hugging Face leaderboard based on MCQA built from non-textual data found in ISO documents, and (c) LLMFeatureSelector, an LLM-based feature selection scikit-learn pipeline. The software is available at https://github.com/IBM/FailureSensorIQ.
Major Entity Identification: A Generalizable Alternative to Coreference Resolution
The limited generalization of coreference resolution (CR) models has been a major bottleneck in the task's broad application. Prior work has identified annotation differences, especially for mention detection, as one of the main reasons for the generalization gap and proposed using additional annotated target domain data. Rather than relying on this additional annotation, we propose an alternative referential task, Major Entity Identification (MEI), where we: (a) assume the target entities to be specified in the input, and (b) limit the task to only the frequent entities. Through extensive experiments, we demonstrate that MEI models generalize well across domains on multiple datasets with supervised models and LLM-based few-shot prompting. Additionally, MEI fits the classification framework, which enables the use of robust and intuitive classification-based metrics. Finally, MEI is also of practical use as it allows a user to search for all mentions of a particular entity or a group of entities of interest.
"We Need Structured Output": Towards User-centered Constraints on Large Language Model Output
Large language models can produce creative and diverse responses. However, to integrate them into current developer workflows, it is essential to constrain their outputs to follow specific formats or standards. In this work, we surveyed 51 experienced industry professionals to understand the range of scenarios and motivations driving the need for output constraints from a user-centered perspective. We identified 134 concrete use cases for constraints at two levels: low-level, which ensures the output adhere to a structured format and an appropriate length, and high-level, which requires the output to follow semantic and stylistic guidelines without hallucination. Critically, applying output constraints could not only streamline the currently repetitive process of developing, testing, and integrating LLM prompts for developers, but also enhance the user experience of LLM-powered features and applications. We conclude with a discussion on user preferences and needs towards articulating intended constraints for LLMs, alongside an initial design for a constraint prototyping tool.
Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement
Visual program synthesis is a promising approach to exploit the reasoning abilities of large language models for compositional computer vision tasks. Previous work has used few-shot prompting with frozen LLMs to synthesize visual programs. Training an LLM to write better visual programs is an attractive prospect, but it is unclear how to accomplish this. No dataset of visual programs for training exists, and acquisition of a visual program dataset cannot be easily crowdsourced due to the need for expert annotators. To get around the lack of direct supervision, we explore improving the program synthesis abilities of an LLM using feedback from interactive experience. We propose a method where we exploit existing annotations for a vision-language task to improvise a coarse reward signal for that task, treat the LLM as a policy, and apply reinforced self-training to improve the visual program synthesis ability of the LLM for that task. We describe a series of experiments on object detection, compositional visual question answering, and image-text retrieval, and show that in each case, the self-trained LLM outperforms or performs on par with few-shot frozen LLMs that are an order of magnitude larger. Website: https://zaidkhan.me/ViReP
Simulating Environments with Reasoning Models for Agent Training
LLM agents excel in compact environments requiring deep reasoning but remain brittle when operating in broader, more complex contexts that demand robustness across diverse tools and schemas. Building bespoke environments for training is heavy, brittle, and limits progress. In this paper, we demonstrate that LLMs can simulate realistic environment feedback without access to actual testbed data or APIs. Inspired by this capability, we propose two frameworks: Simia-SFT, a pipeline that synthesizes SFT data by amplifying small seed sets into diverse trajectories in an environment-agnostic manner, and Simia-RL, a framework that enables RL training without real environment implementations through LLM-simulated feedback. Fine-tuning open models yields consistent improvements across multiple benchmarks, surpassing GPT-4o and approaching o4-mini on tau^2-Bench. Together, Simia-SFT and Simia-RL enable scalable agent training without environment engineering, replacing heavy and brittle implementations with flexible LLM-based simulation.
FATE-LLM: A Industrial Grade Federated Learning Framework for Large Language Models
Large Language Models (LLMs), such as ChatGPT, LLaMA, GLM, and PaLM, have exhibited remarkable performances across various tasks in recent years. However, LLMs face two main challenges in real-world applications. One challenge is that training LLMs consumes vast computing resources, preventing LLMs from being adopted by small and medium-sized enterprises with limited computing resources. Another is that training LLM requires a large amount of high-quality data, which are often scattered among enterprises. To address these challenges, we propose FATE-LLM, an industrial-grade federated learning framework for large language models. FATE-LLM (1) facilitates federated learning for large language models (coined FedLLM); (2) promotes efficient training of FedLLM using parameter-efficient fine-tuning methods; (3) protects the intellectual property of LLMs; (4) preserves data privacy during training and inference through privacy-preserving mechanisms. We release the code of FATE-LLM at https://github.com/FederatedAI/FATE-LLM to facilitate the research of FedLLM and enable a broad range of industrial applications.
Let your LLM generate a few tokens and you will reduce the need for retrieval
In this paper, we investigate how efficiently large language models (LLM) can be trained to check whether an answer is already stored in their parametric memory. We distill an LLM-as-a-judge to compute the IK (I Know) score. We found that this method is particularly beneficial in the context of retrieval-assisted augmented generation (RAG), with a respectable accuracy of 80%. It enables a significant reduction (more than 50%) in the number of search and reranking steps required for certain data sets. We have also introduced the IK score, which serves as a useful tool for characterising datasets by facilitating the classification task. Interestingly, through the inclusion of response tokens as input, our results suggest that only about 20,000 training samples are required to achieve good performance. The central element of this work is the use of a teacher model - the LLM as a judge - to generate training data. We also assess the robustness of the IK classifier by evaluating it with various types of teachers, including both string-based methods and LLMs, with the latter providing better results.
Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
Better than Your Teacher: LLM Agents that learn from Privileged AI Feedback
While large language models (LLMs) show impressive decision-making abilities, current methods lack a mechanism for automatic self-improvement from errors during task execution. We propose LEAP, an iterative fine-tuning framework that continually improves LLM agents using feedback from AI expert teachers. Our key insight is to equip the expert teachers with a privileged state -- information that is available during training but hidden at test time. This allows even weak experts to provide precise guidance, significantly improving the student agent's performance without access to privileged information at test time. We evaluate LEAP on diverse decision-making benchmarks, including text-based games (ALFWorld), web navigation (WebShop), and interactive coding (Intercode Bash). Our experiments show that LEAP (1) outperforms behavior cloning and ReAct baselines (2) enables weak student models (e.g., Llama3-8B) to exceed the performance of strong teacher models (GPT4-o), and (3) allows weak models to self-improve using privileged versions of themselves. We also provide a theoretical analysis showing that LEAP's success hinges on balancing privileged information with the student's realizability, which we empirically validate. Our code is available at https://leap-llm.github.io
FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have achieved state-of-the-art results across diverse domains, yet their development remains reliant on vast amounts of publicly available data, raising concerns about data scarcity and the lack of access to domain-specific, sensitive information. Federated Learning (FL) presents a compelling framework to address these challenges by enabling decentralized fine-tuning on pre-trained LLMs without sharing raw data. However, the compatibility and performance of pre-trained LLMs in FL settings remain largely under explored. We introduce the FlowerTune LLM Leaderboard, a first-of-its-kind benchmarking suite designed to evaluate federated fine-tuning of LLMs across four diverse domains: general NLP, finance, medical, and coding. Each domain includes federated instruction-tuning datasets and domain-specific evaluation metrics. Our results, obtained through a collaborative, open-source and community-driven approach, provide the first comprehensive comparison across 26 pre-trained LLMs with different aggregation and fine-tuning strategies under federated settings, offering actionable insights into model performance, resource constraints, and domain adaptation. This work lays the foundation for developing privacy-preserving, domain-specialized LLMs for real-world applications.
LLM-Augmented Graph Neural Recommenders: Integrating User Reviews
Recommender systems increasingly aim to combine signals from both user reviews and purchase (or other interaction) behaviors. While user-written comments provide explicit insights about preferences, merging these textual representations from large language models (LLMs) with graph-based embeddings of user actions remains a challenging task. In this work, we propose a framework that employs both a Graph Neural Network (GNN)-based model and an LLM to produce review-aware representations, preserving review semantics while mitigating textual noise. Our approach utilizes a hybrid objective that balances user-item interactions against text-derived features, ensuring that user's both behavioral and linguistic signals are effectively captured. We evaluate this method on multiple datasets from diverse application domains, demonstrating consistent improvements over a baseline GNN-based recommender model. Notably, our model achieves significant gains in recommendation accuracy when review data is sparse or unevenly distributed. These findings highlight the importance of integrating LLM-driven textual feedback with GNN-derived user behavioral patterns to develop robust, context-aware recommender systems.
Self-Refine: Iterative Refinement with Self-Feedback
Like humans, large language models (LLMs) do not always generate the best output on their first try. Motivated by how humans refine their written text, we introduce Self-Refine, an approach for improving initial outputs from LLMs through iterative feedback and refinement. The main idea is to generate an initial output using an LLMs; then, the same LLMs provides feedback for its output and uses it to refine itself, iteratively. Self-Refine does not require any supervised training data, additional training, or reinforcement learning, and instead uses a single LLM as the generator, refiner, and feedback provider. We evaluate Self-Refine across 7 diverse tasks, ranging from dialog response generation to mathematical reasoning, using state-of-the-art (GPT-3.5, ChatGPT, and GPT-4) LLMs. Across all evaluated tasks, outputs generated with Self-Refine are preferred by humans and automatic metrics over those generated with the same LLM using conventional one-step generation, improving by ~20% absolute on average in task performance. Our work demonstrates that even state-of-the-art LLMs like GPT-4 can be further improved at test time using our simple, standalone approach.
Automating Intervention Discovery from Scientific Literature: A Progressive Ontology Prompting and Dual-LLM Framework
Identifying effective interventions from the scientific literature is challenging due to the high volume of publications, specialized terminology, and inconsistent reporting formats, making manual curation laborious and prone to oversight. To address this challenge, this paper proposes a novel framework leveraging large language models (LLMs), which integrates a progressive ontology prompting (POP) algorithm with a dual-agent system, named LLM-Duo. On the one hand, the POP algorithm conducts a prioritized breadth-first search (BFS) across a predefined ontology, generating structured prompt templates and action sequences to guide the automatic annotation process. On the other hand, the LLM-Duo system features two specialized LLM agents, an explorer and an evaluator, working collaboratively and adversarially to continuously refine annotation quality. We showcase the real-world applicability of our framework through a case study focused on speech-language intervention discovery. Experimental results show that our approach surpasses advanced baselines, achieving more accurate and comprehensive annotations through a fully automated process. Our approach successfully identified 2,421 interventions from a corpus of 64,177 research articles in the speech-language pathology domain, culminating in the creation of a publicly accessible intervention knowledge base with great potential to benefit the speech-language pathology community.
POPri: Private Federated Learning using Preference-Optimized Synthetic Data
In practical settings, differentially private Federated learning (DP-FL) is the dominant method for training models from private, on-device client data. Recent work has suggested that DP-FL may be enhanced or outperformed by methods that use DP synthetic data (Wu et al., 2024; Hou et al., 2024). The primary algorithms for generating DP synthetic data for FL applications require careful prompt engineering based on public information and/or iterative private client feedback. Our key insight is that the private client feedback collected by prior DP synthetic data methods (Hou et al., 2024; Xie et al., 2024) can be viewed as an RL (reinforcement learning) reward. Our algorithm, Policy Optimization for Private Data (POPri) harnesses client feedback using policy optimization algorithms such as Direct Preference Optimization (DPO) to fine-tune LLMs to generate high-quality DP synthetic data. To evaluate POPri, we release LargeFedBench, a new federated text benchmark for uncontaminated LLM evaluations on federated client data. POPri substantially improves the utility of DP synthetic data relative to prior work on LargeFedBench datasets and an existing benchmark from Xie et al. (2024). POPri closes the gap between next-token prediction accuracy in the fully-private and non-private settings by up to 58%, compared to 28% for prior synthetic data methods, and 3% for state-of-the-art DP federated learning methods. The code and data are available at https://github.com/meiyuw/POPri.
Promptagator: Few-shot Dense Retrieval From 8 Examples
Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given.
Understanding LLM Embeddings for Regression
With the rise of large language models (LLMs) for flexibly processing information as strings, a natural application is regression, specifically by preprocessing string representations into LLM embeddings as downstream features for metric prediction. In this paper, we provide one of the first comprehensive investigations into embedding-based regression and demonstrate that LLM embeddings as features can be better for high-dimensional regression tasks than using traditional feature engineering. This regression performance can be explained in part due to LLM embeddings over numeric data inherently preserving Lipschitz continuity over the feature space. Furthermore, we quantify the contribution of different model effects, most notably model size and language understanding, which we find surprisingly do not always improve regression performance.
Bohdi: Heterogeneous LLM Fusion with Automatic Data Exploration
Heterogeneous Large Language Model (LLM) fusion integrates the strengths of multiple source LLMs with different architectures into a target LLM with low computational overhead. While promising, existing methods suffer from two major limitations: 1) reliance on real data from limited domain for knowledge fusion, preventing the target LLM from fully acquiring knowledge across diverse domains, and 2) fixed data allocation proportions across domains, failing to dynamically adjust according to the target LLM's varying capabilities across domains, leading to a capability imbalance. To overcome these limitations, we propose Bohdi, a synthetic-data-only heterogeneous LLM fusion framework. Through the organization of knowledge domains into a hierarchical tree structure, Bohdi enables automatic domain exploration and multi-domain data generation through multi-model collaboration, thereby comprehensively extracting knowledge from source LLMs. By formalizing domain expansion and data sampling proportion allocation on the knowledge tree as a Hierarchical Multi-Armed Bandit problem, Bohdi leverages the designed DynaBranches mechanism to adaptively adjust sampling proportions based on the target LLM's performance feedback across domains. Integrated with our proposed Introspection-Rebirth (IR) mechanism, DynaBranches dynamically tracks capability shifts during target LLM's updates via Sliding Window Binomial Likelihood Ratio Testing (SWBLRT), further enhancing its online adaptation capability. Comparative experimental results on a comprehensive suite of benchmarks demonstrate that Bohdi significantly outperforms existing baselines on multiple target LLMs, exhibits higher data efficiency, and virtually eliminates the imbalance in the target LLM's capabilities. Our code is available at https://github.com/gjq100/Bohdi.git.
Universal Model Routing for Efficient LLM Inference
Large language models' significant advances in capabilities are accompanied by significant increases in inference costs. Model routing is a simple technique for reducing inference cost, wherein one maintains a pool of candidate LLMs, and learns to route each prompt to the smallest feasible LLM. Existing works focus on learning a router for a fixed pool of LLMs. In this paper, we consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time. We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts. Based on this, we detail two effective strategies, relying on cluster-based routing and a learned cluster map respectively. We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors. Experiments on a range of public benchmarks show the effectiveness of the proposed strategies in routing amongst more than 30 unseen LLMs.
ReLook: Vision-Grounded RL with a Multimodal LLM Critic for Agentic Web Coding
While Large Language Models (LLMs) excel at algorithmic code generation, they struggle with front-end development, where correctness is judged on rendered pixels and interaction. We present ReLook, an agentic, vision-grounded reinforcement learning framework that empowers an agent to close a robust generate--diagnose--refine loop by invoking a multimodal LLM (MLLM) as a tool. During training, the agent uses the MLLM-in-the-loop both as a visual critic--scoring code with screenshots--and as a source of actionable, vision-grounded feedback; a strict zero-reward rule for invalid renders anchors renderability and prevents reward hacking. To prevent behavioral collapse, we introduce Forced Optimization, a strict acceptance rule that admits only improving revisions, yielding monotonically better trajectories. At inference, we decouple the critic and run a lightweight, critic-free self-edit cycle, keeping latency comparable to base decoding while retaining most of the gains. Across three widely used benchmarks, ReLook consistently outperforms strong baselines in vision-grounded front-end code generation, highlighting the benefits of agentic perception, visual rewards, and training-inference decoupling.
Personalized Language Modeling from Personalized Human Feedback
Personalized large language models (LLMs) are designed to tailor responses to individual user preferences. While Reinforcement Learning from Human Feedback (RLHF) is a commonly used framework for aligning LLMs with human preferences, vanilla RLHF assumes that all human preferences share the same distribution, preventing fine-tuned LLMs from generating personalized content when user preferences are diverse. In this work, we propose Personalized-RLHF (P-RLHF), an efficient framework that utilizes a lightweight user model to capture individual user preferences and jointly learns the user model and the personalized LLM from human feedback. P-RLHF exhibits the following three characteristics: (1) It enables an LLM to generate personalized content and scale efficiently with growing number of users. (2) It handles both explicit user preferences described as textual input and implicit user preferences encoded in the feedback data. (3) It eliminates the need for users to fully articulate their preferences, which are normally needed for prompting LLMs to generate personalized content yet are often impractical to obtain in real-world scenarios. Our experimental results show that personalized LLMs trained using P-RLHF generate responses that are more closely aligned with individual user preferences, outperforming vanilla, non-personalized RLHF and prompting-based personalization approaches across different tasks. We opensource our code at https://github.com/HumainLab/Personalized_RLHF.
RECODE-H: A Benchmark for Research Code Development with Interactive Human Feedback
Large language models (LLMs) show the promise in supporting scientific research implementation, yet their ability to generate correct and executable code remains limited. Existing works largely adopt one-shot settings, ignoring the iterative and feedback-driven nature of realistic workflows of scientific research development. To address this gap, we present RECODE-H, a benchmark of 102 tasks from research papers and repositories that evaluates LLM agents through multi-turn interactions with LLM-simulated human feedback. It includes structured instructions,unit tests, and a five-level feedback hierarchy to reflect realistic researcher-agent collaboration. We further present ReCodeAgent, a framework that integrates feedback into iterative code generation. Experiments with leading LLMs, including GPT-5, Claude-Sonnet-4, DeepSeek-V3.1, and Gemini 2.5, show substantial performance gains with richer feedback, while also highlighting ongoing challenges in the generation of complex research code. RECODE-H establishes a foundation for developing adaptive, feedback-driven LLM agents in scientific research implementation
SkyLadder: Better and Faster Pretraining via Context Window Scheduling
Recent advancements in LLM pretraining have featured ever-expanding context windows to process longer sequences. However, our pilot study reveals that models pretrained with shorter context windows consistently outperform their long-context counterparts under a fixed token budget. This finding motivates us to explore an optimal context window scheduling strategy to better balance long-context capability with pretraining efficiency. To this end, we propose SkyLadder, a simple yet effective approach that implements a short-to-long context window transition. SkyLadder preserves strong standard benchmark performance, while matching or exceeding baseline results on long context tasks. Through extensive experiments, we pre-train 1B-parameter models (up to 32K context) and 3B-parameter models (8K context) on 100B tokens, demonstrating that SkyLadder yields consistent gains of up to 3.7% on common benchmarks, while achieving up to 22% faster training speeds compared to baselines. The code is at https://github.com/sail-sg/SkyLadder.
SWE-Master: Unleashing the Potential of Software Engineering Agents via Post-Training
In this technical report, we present SWE-Master, an open-source and fully reproducible post-training framework for building effective software engineering agents. SWE-Master systematically explores the complete agent development pipeline, including teacher-trajectory synthesis and data curation, long-horizon SFT, RL with real execution feedback, and inference framework design. Starting from an open-source base model with limited initial SWE capability, SWE-Master demonstrates how systematical optimization method can elicit strong long-horizon SWE task solving abilities. We evaluate SWE-Master on SWE-bench Verified, a standard benchmark for realistic software engineering tasks. Under identical experimental settings, our approach achieves a resolve rate of 61.4\% with Qwen2.5-Coder-32B, substantially outperforming existing open-source baselines. By further incorporating test-time scaling~(TTS) with LLM-based environment feedback, SWE-Master reaches 70.8\% at TTS@8, demonstrating a strong performance potential. SWE-Master provides a practical and transparent foundation for advancing reproducible research on software engineering agents. The code is available at https://github.com/RUCAIBox/SWE-Master.
GPT-InvestAR: Enhancing Stock Investment Strategies through Annual Report Analysis with Large Language Models
Annual Reports of publicly listed companies contain vital information about their financial health which can help assess the potential impact on Stock price of the firm. These reports are comprehensive in nature, going up to, and sometimes exceeding, 100 pages. Analysing these reports is cumbersome even for a single firm, let alone the whole universe of firms that exist. Over the years, financial experts have become proficient in extracting valuable information from these documents relatively quickly. However, this requires years of practice and experience. This paper aims to simplify the process of assessing Annual Reports of all the firms by leveraging the capabilities of Large Language Models (LLMs). The insights generated by the LLM are compiled in a Quant styled dataset and augmented by historical stock price data. A Machine Learning model is then trained with LLM outputs as features. The walkforward test results show promising outperformance wrt S&P500 returns. This paper intends to provide a framework for future work in this direction. To facilitate this, the code has been released as open source.
DSPC: Dual-Stage Progressive Compression Framework for Efficient Long-Context Reasoning
Large language models (LLMs) have achieved remarkable success in many natural language processing (NLP) tasks. To achieve more accurate output, the prompts used to drive LLMs have become increasingly longer, which incurs higher computational costs. To address this prompt inflation problem, prompt compression has been proposed. However, most existing methods require training a small auxiliary model for compression, incurring a significant amount of additional computation. To avoid this, we propose a two-stage, training-free approach, called Dual-Stage Progressive Compression (DSPC). In the coarse-grained stage, semantic-related sentence filtering removes sentences with low semantic value based on TF-IDF. In the fine-grained stage, token importance is assessed using attention contribution, cross-model loss difference, and positional importance, enabling the pruning of low-utility tokens while preserving semantics. We validate DSPC on LLaMA-3.1-8B-Instruct and GPT-3.5-Turbo under a constrained token budget and observe consistent improvements. For instance, in the FewShot task of the Longbench dataset, DSPC achieves a performance of 49.17 by using only 3x fewer tokens, outperforming the best state-of-the-art baseline LongLLMLingua by 7.76.
MoNaCo: More Natural and Complex Questions for Reasoning Across Dozens of Documents
Large language models (LLMs) are emerging as a go-to tool for querying information. However, current LLM benchmarks rarely feature natural questions that are both information-seeking as well as genuinely time-consuming for humans. To address this gap we introduce MoNaCo, a benchmark of 1,315 natural and complex questions that require dozens, and at times hundreds, of intermediate steps to solve -- far more than any existing QA benchmark. To build MoNaCo, we developed a decomposed annotation pipeline to elicit and manually answer natural time-consuming questions at scale. Frontier LLMs evaluated on MoNaCo achieve at most 61.2% F1, hampered by low recall and hallucinations. Our results underscore the need for reasoning models that better handle the complexity and sheer breadth of real-world information-seeking questions -- with MoNaCo providing an effective resource for tracking such progress. The MONACO benchmark, codebase, prompts and models predictions are publicly available at: https://tomerwolgithub.github.io/monaco
Information-Guided Identification of Training Data Imprint in (Proprietary) Large Language Models
High-quality training data has proven crucial for developing performant large language models (LLMs). However, commercial LLM providers disclose few, if any, details about the data used for training. This lack of transparency creates multiple challenges: it limits external oversight and inspection of LLMs for issues such as copyright infringement, it undermines the agency of data authors, and it hinders scientific research on critical issues such as data contamination and data selection. How can we recover what training data is known to LLMs? In this work, we demonstrate a new method to identify training data known to proprietary LLMs like GPT-4 without requiring any access to model weights or token probabilities, by using information-guided probes. Our work builds on a key observation: text passages with high surprisal are good search material for memorization probes. By evaluating a model's ability to successfully reconstruct high-surprisal tokens in text, we can identify a surprising number of texts memorized by LLMs.
Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control. Given a training corpus and control criteria formulated as a sequence-level constraint on model outputs, our method fine-tunes the LLM on the training corpus while enhancing constraint satisfaction with minimal impact on its utility and generation quality. Specifically, our approach regularizes the LLM training by penalizing the KL divergence between the desired output distribution, which satisfies the constraints, and the LLM's posterior. This regularization term can be approximated by an auxiliary model trained to decompose the sequence-level constraints into token-level guidance, allowing the term to be measured by a closed-form formulation. To further improve efficiency, we design a parallel scheme for concurrently updating both the LLM and the auxiliary model. We evaluate the empirical performance of our approach by controlling the toxicity when training an LLM. We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
HLLM: Enhancing Sequential Recommendations via Hierarchical Large Language Models for Item and User Modeling
Large Language Models (LLMs) have achieved remarkable success in various fields, prompting several studies to explore their potential in recommendation systems. However, these attempts have so far resulted in only modest improvements over traditional recommendation models. Moreover, three critical questions remain under-explored: firstly, the real value of LLMs' pre-trained weights, often considered to encapsulate world knowledge; secondly, the necessity of fine-tuning for recommendation tasks; lastly, whether LLMs can exhibit the same scalability benefits in recommendation systems as they do in other domains. In this paper, we propose a novel Hierarchical Large Language Model (HLLM) architecture designed to enhance sequential recommendation systems. Our approach employs a two-tier model: the first Item LLM extracts rich content features from the detailed text description of the item, while the second User LLM utilizes these features to predict users' future interests based on their interaction history. Extensive experiments demonstrate that our method effectively leverages the pre-trained capabilities of open-source LLMs, and further fine-tuning leads to significant performance boosts. Additionally, HLLM achieves excellent scalability, with the largest configuration utilizing 7B parameters for both item feature extraction and user interest modeling. Moreover, HLLM offers excellent training and serving efficiency, making it practical in real-world applications. Evaluations on two large-scale datasets, PixelRec and Amazon Reviews, show that HLLM achieves state-of-the-art results, outperforming traditional ID-based models by a wide margin. In online A/B testing, HLLM showcases notable gains, validating its practical impact in real-world recommendation scenarios. Codes are available at https://github.com/bytedance/HLLM.
LLM4GNAS: A Large Language Model Based Toolkit for Graph Neural Architecture Search
Graph Neural Architecture Search (GNAS) facilitates the automatic design of Graph Neural Networks (GNNs) tailored to specific downstream graph learning tasks. However, existing GNAS approaches often require manual adaptation to new graph search spaces, necessitating substantial code optimization and domain-specific knowledge. To address this challenge, we present LLM4GNAS, a toolkit for GNAS that leverages the generative capabilities of Large Language Models (LLMs). LLM4GNAS includes an algorithm library for graph neural architecture search algorithms based on LLMs, enabling the adaptation of GNAS methods to new search spaces through the modification of LLM prompts. This approach reduces the need for manual intervention in algorithm adaptation and code modification. The LLM4GNAS toolkit is extensible and robust, incorporating LLM-enhanced graph feature engineering, LLM-enhanced graph neural architecture search, and LLM-enhanced hyperparameter optimization. Experimental results indicate that LLM4GNAS outperforms existing GNAS methods on tasks involving both homogeneous and heterogeneous graphs.
Rec-R1: Bridging Generative Large Language Models and User-Centric Recommendation Systems via Reinforcement Learning
We propose Rec-R1, a general reinforcement learning framework that bridges large language models (LLMs) with recommendation systems through closed-loop optimization. Unlike prompting and supervised fine-tuning (SFT), Rec-R1 directly optimizes LLM generation using feedback from a fixed black-box recommendation model, without relying on synthetic SFT data from proprietary models such as GPT-4o. This avoids the substantial cost and effort required for data distillation. To verify the effectiveness of Rec-R1, we evaluate it on two representative tasks: product search and sequential recommendation. Experimental results demonstrate that Rec-R1 not only consistently outperforms prompting- and SFT-based methods, but also achieves significant gains over strong discriminative baselines, even when used with simple retrievers such as BM25. Moreover, Rec-R1 preserves the general-purpose capabilities of the LLM, unlike SFT, which often impairs instruction-following and reasoning. These findings suggest Rec-R1 as a promising foundation for continual task-specific adaptation without catastrophic forgetting.
Doctor Sun: A Bilingual Multimodal Large Language Model for Biomedical AI
Large multimodal models (LMMs) have demonstrated significant potential in providing innovative solutions for various biomedical tasks, including pathology analysis, radiology report generation, and biomedical assistance. However, the existing multimodal biomedical AI is typically based on foundation LLMs, thus hindering the understanding of intricate medical concepts with limited medical training data. Moreover, recent LLaVA-induced medical LMMs struggle to effectively capture the intricate relationship between the texts and the images. Therefore, we introduce Doctor Sun, a large multimodal generative model specialized in medicine, developed to encode, integrate, and interpret diverse biomedical data modalities such as text and images. In particular, Doctor Sun integrates a pre-trained vision encoder with a medical LLM and conducts two-stage training on various medical datasets, focusing on feature alignment and instruction tuning. Moreover, we release SunMed-VL, a wide-range bilingual medical multimodal dataset, along with all associated models, code, and resources, to freely support the advancement of biomedical multimodal research.
Proofread: Fixes All Errors with One Tap
The impressive capabilities in Large Language Models (LLMs) provide a powerful approach to reimagine users' typing experience. This paper demonstrates Proofread, a novel Gboard feature powered by a server-side LLM in Gboard, enabling seamless sentence-level and paragraph-level corrections with a single tap. We describe the complete system in this paper, from data generation, metrics design to model tuning and deployment. To obtain models with sufficient quality, we implement a careful data synthetic pipeline tailored to online use cases, design multifaceted metrics, employ a two-stage tuning approach to acquire the dedicated LLM for the feature: the Supervised Fine Tuning (SFT) for foundational quality, followed by the Reinforcement Learning (RL) tuning approach for targeted refinement. Specifically, we find sequential tuning on Rewrite and proofread tasks yields the best quality in SFT stage, and propose global and direct rewards in the RL tuning stage to seek further improvement. Extensive experiments on a human-labeled golden set showed our tuned PaLM2-XS model achieved 85.56\% good ratio. We launched the feature to Pixel 8 devices by serving the model on TPU v5 in Google Cloud, with thousands of daily active users. Serving latency was significantly reduced by quantization, bucket inference, text segmentation, and speculative decoding. Our demo could be seen in https://youtu.be/4ZdcuiwFU7I{Youtube}.
SwiReasoning: Switch-Thinking in Latent and Explicit for Pareto-Superior Reasoning LLMs
Recent work shows that, beyond discrete reasoning through explicit chain-of-thought steps, which are limited by the boundaries of natural languages, large language models (LLMs) can also reason continuously in latent space, allowing richer information per step and thereby improving token efficiency. Despite this promise, latent reasoning still faces two challenges, especially in training-free settings: 1) purely latent reasoning broadens the search distribution by maintaining multiple implicit paths, which diffuses probability mass, introduces noise, and impedes convergence to a single high-confidence solution, thereby hurting accuracy; and 2) overthinking persists even without explicit text, wasting tokens and degrading efficiency. To address these issues, we introduce SwiReasoning, a training-free framework for LLM reasoning which features two key innovations: 1) SwiReasoning dynamically switches between explicit and latent reasoning, guided by block-wise confidence estimated from entropy trends in next-token distributions, to balance exploration and exploitation and promote timely convergence. 2) By limiting the maximum number of thinking-block switches, SwiReasoning curbs overthinking and improves token efficiency across varying problem difficulties. On widely used mathematics and STEM benchmarks, SwiReasoning consistently improves average accuracy by 1.5%-2.8% across reasoning LLMs of different model families and scales. Furthermore, under constrained budgets, SwiReasoning improves average token efficiency by 56%-79%, with larger gains as budgets tighten.
Adaptive Batch-Wise Sample Scheduling for Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as an effective approach for aligning large language models (LLMs) with human preferences. However, its performance is highly dependent on the quality of the underlying human preference data. To address this bottleneck, prior work has explored various data selection strategies, but these methods often overlook the impact of the evolving states of the language model during the optimization process. In this paper, we introduce a novel problem: Sample Scheduling for DPO, which aims to dynamically and adaptively schedule training samples based on the model's evolving batch-wise states throughout preference optimization. To solve this problem, we propose SamS, an efficient and effective algorithm that adaptively selects samples in each training batch based on the LLM's learning feedback to maximize the potential generalization performance. Notably, without modifying the core DPO algorithm, simply integrating SamS significantly improves performance across tasks, with minimal additional computational overhead. This work points to a promising new direction for improving LLM alignment through batch-wise sample selection, with potential generalization to RLHF and broader supervised learning paradigms.
SCALE: Synergized Collaboration of Asymmetric Language Translation Engines
In this paper, we introduce SCALE, a collaborative framework that connects compact Specialized Translation Models (STMs) and general-purpose Large Language Models (LLMs) as one unified translation engine. By introducing translation from STM into the triplet in-context demonstrations, SCALE unlocks refinement and pivoting ability of LLM, thus mitigating language bias of LLM and parallel data bias of STM, enhancing LLM speciality without sacrificing generality, and facilitating continual learning without expensive LLM fine-tuning. Our comprehensive experiments show that SCALE significantly outperforms both few-shot LLMs (GPT-4) and specialized models (NLLB) in challenging low-resource settings. Moreover, in Xhosa to English translation, SCALE experiences consistent improvement by a 4 BLEURT score without tuning LLM and surpasses few-shot GPT-4 by 2.5 COMET score and 3.8 BLEURT score when equipped with a compact model consisting of merely 600M parameters. SCALE could also effectively exploit the existing language bias of LLMs by using an English-centric STM as a pivot for translation between any language pairs, outperforming few-shot GPT-4 by an average of 6 COMET points across eight translation directions. Furthermore we provide an in-depth analysis of SCALE's robustness, translation characteristics, and latency costs, providing solid foundation for future studies exploring the potential synergy between LLMs and more specialized, task-specific models.
AutoConv: Automatically Generating Information-seeking Conversations with Large Language Models
Information-seeking conversation, which aims to help users gather information through conversation, has achieved great progress in recent years. However, the research is still stymied by the scarcity of training data. To alleviate this problem, we propose AutoConv for synthetic conversation generation, which takes advantage of the few-shot learning ability and generation capacity of large language models (LLM). Specifically, we formulate the conversation generation problem as a language modeling task, then finetune an LLM with a few human conversations to capture the characteristics of the information-seeking process and use it for generating synthetic conversations with high quality. Experimental results on two frequently-used datasets verify that AutoConv has substantial improvements over strong baselines and alleviates the dependence on human annotation. In addition, we also provide several analysis studies to promote future research.
CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models
Pre-trained on massive amounts of code and text data, large language models (LLMs) have demonstrated remarkable achievements in performing code generation tasks. With additional execution-based feedback, these models can act as agents with capabilities to self-refine and improve generated code autonomously. However, on challenging coding tasks with extremely large search space, current agentic approaches still struggle with multi-stage planning, generating, and debugging. To address this problem, we propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process. Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions. In each stage, critical decision-making (ranking, termination, expanding) of the exploration process is guided by both the environmental execution-based feedback and LLM-agent-generated feedback. We comprehensively evaluated CodeTree on 7 code generation benchmarks and demonstrated the significant performance gains of CodeTree against strong baselines. Using GPT-4o as the base model, we consistently achieved top results of 95.1 on HumanEval, 98.7 on MBPP, and 43.0 on CodeContests. On the challenging SWEBench benchmark, our approach led to significant performance gains.
Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations
Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models(LLMs) in systematically accessing richer factual context. However, the integration of RAG mechanisms brings its inherent challenges, as LLMs need to deal with potentially noisy contexts. Recent studies have shown that LLMs still struggle to critically analyse RAG-based in-context information, a limitation that may lead to incorrect inferences and hallucinations. In this paper, we investigate how to elicit critical reasoning in RAG via contrastive explanations. In particular, we propose Contrastive-RAG (C-RAG), a framework that (i) retrieves relevant documents given a query, (ii) selects and exemplifies relevant passages, and (iii) generates explanations that explicitly contrast the relevance of the passages to (iv) support the final answer. We show the impact of C-RAG building contrastive reasoning demonstrations from LLMs to instruct smaller models for retrieval-augmented tasks. Extensive experiments demonstrate that C-RAG improves state-of-the-art RAG models while (a) requiring significantly fewer prompts and demonstrations and (b) being robust to perturbations in the retrieved documents.
An Empirical Study on Low-Code Programming using Traditional vs Large Language Model Support
Low-code programming (LCP) refers to programming using models at higher levels of abstraction, resulting in less manual and more efficient programming, and reduced learning effort for amateur developers. Many LCP tools have rapidly evolved and have benefited from the concepts of visual programming languages (VPLs) and programming by demonstration (PBD). With the huge increase in interest in using large language models (LLMs) in software engineering, LLM-based LCP has begun to become increasingly important. However, the technical principles and application scenarios of traditional approaches to LCP and LLM-based LCP are significantly different. Understanding these key differences and characteristics in the application of the two approaches to LCP by users is crucial for LCP providers in improving existing and developing new LCP tools and in better assisting users in choosing the appropriate LCP technology. We conducted an empirical study of both traditional LCP and LLM-based LCP. We analyzed developers' discussions on Stack Overflow (SO) over the past three years and then explored the similarities and differences between traditional LCP and LLM-based LCP features and developer feedback. Our findings reveal that while traditional LCP and LLM-based LCP share common primary usage scenarios, they significantly differ in scope, limitations, and usage throughout the software development lifecycle, particularly during the implementation phase. We also examine how LLMs impact and integrate with LCP, discussing the latest technological developments in LLM-based LCP, such as its integration with VPLs and the application of LLM Agents in software engineering.
Large Language Models aren't all that you need
This paper describes the architecture and systems built towards solving the SemEval 2023 Task 2: MultiCoNER II (Multilingual Complex Named Entity Recognition) [1]. We evaluate two approaches (a) a traditional Conditional Random Fields model and (b) a Large Language Model (LLM) fine-tuned with a customized head and compare the two approaches. The novel ideas explored are: 1) Decaying auxiliary loss (with residual) - where we train the model on an auxiliary task of Coarse-Grained NER and include this task as a part of the loss function 2) Triplet token blending - where we explore ways of blending the embeddings of neighboring tokens in the final NER layer prior to prediction 3) Task-optimal heads - where we explore a variety of custom heads and learning rates for the final layer of the LLM. We also explore multiple LLMs including GPT-3 and experiment with a variety of dropout and other hyperparameter settings before arriving at our final model which achieves micro & macro f1 of 0.85/0.84 (on dev) and 0.67/0.61 on the test data . We show that while pre-trained LLMs, by themselves, bring about a large improvement in scores as compared to traditional models, we also demonstrate that tangible improvements to the Macro-F1 score can be made by augmenting the LLM with additional feature/loss/model engineering techniques described above.
ROS-LLM: A ROS framework for embodied AI with task feedback and structured reasoning
We present a framework for intuitive robot programming by non-experts, leveraging natural language prompts and contextual information from the Robot Operating System (ROS). Our system integrates large language models (LLMs), enabling non-experts to articulate task requirements to the system through a chat interface. Key features of the framework include: integration of ROS with an AI agent connected to a plethora of open-source and commercial LLMs, automatic extraction of a behavior from the LLM output and execution of ROS actions/services, support for three behavior modes (sequence, behavior tree, state machine), imitation learning for adding new robot actions to the library of possible actions, and LLM reflection via human and environment feedback. Extensive experiments validate the framework, showcasing robustness, scalability, and versatility in diverse scenarios, including long-horizon tasks, tabletop rearrangements, and remote supervisory control. To facilitate the adoption of our framework and support the reproduction of our results, we have made our code open-source. You can access it at: https://github.com/huawei-noah/HEBO/tree/master/ROSLLM.
Fed-SE: Federated Self-Evolution for Privacy-Constrained Multi-Environment LLM Agents
LLM agents are widely deployed in complex interactive tasks, yet privacy constraints often preclude centralized optimization and co-evolution across dynamic environments. While Federated Learning (FL) has proven effective on static datasets, its extension to the open-ended self-evolution of agents remains underexplored. Directly applying standard FL is challenging: heterogeneous tasks and sparse, trajectory-level rewards introduce severe gradient conflicts, destabilizing the global optimization process. To bridge this gap, we propose Fed-SE, a Federated Self-Evolution framework for LLM agents. Fed-SE establishes a local evolution-global aggregation paradigm. Locally, agents employ parameter-efficient fine-tuning on filtered, high-return trajectories to achieve stable gradient updates. Globally, Fed-SE aggregates updates within a low-rank subspace that disentangles environment-specific dynamics, effectively reducing negative transfer across clients. Experiments across five heterogeneous environments demonstrate that Fed-SE improves average task success rates by approximately 18% over federated baselines, validating its effectiveness in robust cross-environment knowledge transfer in privacy-constrained deployments.
LLM Distillation for Efficient Few-Shot Multiple Choice Question Answering
Multiple Choice Question Answering (MCQA) is an important problem with numerous real-world applications, such as medicine, law, and education. The high cost of building MCQA datasets makes few-shot learning pivotal in this domain. While Large Language Models (LLMs) can enable few-shot learning, their direct application in real-world scenarios is often hindered by their high computational cost. To address this challenge, we propose a simple yet effective approach that uses LLMs for data generation and scoring. Our approach utilizes LLMs to create MCQA data which contains questions and choices, and to assign probability scores to the generated choices. We then use the generated data and LLM-assigned scores to finetune a smaller and more efficient encoder-only model, DeBERTa-v3-base by leveraging distillation loss. Extensive experiments on the Massive Multitask Language Understanding (MMLU) benchmark demonstrate that our method improves accuracy from 28.9% to 39.3%, representing a gain of over 10% compared to a baseline finetuned directly on 5-shot examples. This shows the effectiveness of LLM-driven data generation and knowledge distillation for few-shot MCQA.
Heterogeneous LLM Methods for Ontology Learning (Few-Shot Prompting, Ensemble Typing, and Attention-Based Taxonomies)
We present a comprehensive system for addressing Tasks A, B, and C of the LLMs4OL 2025 challenge, which together span the full ontology construction pipeline: term extraction, typing, and taxonomy discovery. Our approach combines retrieval-augmented prompting, zero-shot classification, and attention-based graph modeling -- each tailored to the demands of the respective task. For Task A, we jointly extract domain-specific terms and their ontological types using a retrieval-augmented generation (RAG) pipeline. Training data was reformulated into a document to terms and types correspondence, while test-time inference leverages semantically similar training examples. This single-pass method requires no model finetuning and improves overall performance through lexical augmentation Task B, which involves assigning types to given terms, is handled via a dual strategy. In the few-shot setting (for domains with labeled training data), we reuse the RAG scheme with few-shot prompting. In the zero-shot setting (for previously unseen domains), we use a zero-shot classifier that combines cosine similarity scores from multiple embedding models using confidence-based weighting. In Task C, we model taxonomy discovery as graph inference. Using embeddings of type labels, we train a lightweight cross-attention layer to predict is-a relations by approximating a soft adjacency matrix. These modular, task-specific solutions enabled us to achieve top-ranking results in the official leaderboard across all three tasks. Taken together these strategies showcase the scalability, adaptability, and robustness of LLM-based architectures for ontology learning across heterogeneous domains. Code is available at: https://github.com/BelyaevaAlex/LLMs4OL-Challenge-Alexbek
User Feedback in Human-LLM Dialogues: A Lens to Understand Users But Noisy as a Learning Signal
Once language models (LMs) are deployed, they can interact with users long-term, ideally evolving continuously based on their feedback. Asking for direct user feedback can be disruptive; thus, we study harvesting user feedback from user-LM interaction logs. We study implicit user feedback in two user-LM interaction datasets (WildChat and LMSYS). First, we analyze user feedback in the user-LLM conversation trajectory, providing insights into when and why such feedback occurs. Second, we study harvesting learning signals from such implicit user feedback. We find that the contents of user feedback (e.g., user wanted clarification), not just the polarity (e.g., users were unhappy with the previous model response), can improve model performance in short human-designed questions (MTBench) but not on longer and more complex questions (WildBench). We also find that the usefulness of user feedback is largely tied to the quality of the user's initial prompt. Together, we provide an in-depth study of implicit user feedback, showing its potential and limitations.
Alleviating the Fear of Losing Alignment in LLM Fine-tuning
Large language models (LLMs) have demonstrated revolutionary capabilities in understanding complex contexts and performing a wide range of tasks. However, LLMs can also answer questions that are unethical or harmful, raising concerns about their applications. To regulate LLMs' responses to such questions, a training strategy called alignment can help. Yet, alignment can be unexpectedly compromised when fine-tuning an LLM for downstream tasks. This paper focuses on recovering the alignment lost during fine-tuning. We observe that there are two distinct directions inherent in an aligned LLM: the aligned direction and the harmful direction. An LLM is inclined to answer questions in the aligned direction while refusing queries in the harmful direction. Therefore, we propose to recover the harmful direction of the fine-tuned model that has been compromised. Specifically, we restore a small subset of the fine-tuned model's weight parameters from the original aligned model using gradient descent. We also introduce a rollback mechanism to avoid aggressive recovery and maintain downstream task performance. Our evaluation on 125 fine-tuned LLMs demonstrates that our method can reduce their harmful rate (percentage of answering harmful questions) from 33.25\% to 1.74\%, without sacrificing task performance much. In contrast, the existing methods either only reduce the harmful rate to a limited extent or significantly impact the normal functionality. Our code is available at https://github.com/kangyangWHU/LLMAlignment
LLM-VPRF: Large Language Model Based Vector Pseudo Relevance Feedback
Vector Pseudo Relevance Feedback (VPRF) has shown promising results in improving BERT-based dense retrieval systems through iterative refinement of query representations. This paper investigates the generalizability of VPRF to Large Language Model (LLM) based dense retrievers. We introduce LLM-VPRF and evaluate its effectiveness across multiple benchmark datasets, analyzing how different LLMs impact the feedback mechanism. Our results demonstrate that VPRF's benefits successfully extend to LLM architectures, establishing it as a robust technique for enhancing dense retrieval performance regardless of the underlying models. This work bridges the gap between VPRF with traditional BERT-based dense retrievers and modern LLMs, while providing insights into their future directions.
Accelerating Unbiased LLM Evaluation via Synthetic Feedback
When developing new large language models (LLMs), a key step is evaluating their final performance, often by computing the win-rate against a reference model based on external feedback. Human feedback is the gold standard, particularly for capturing nuanced qualities like coherence, readability, and alignment with human expectations. However, human evaluations are costly -- even for large tech companies -- and when conducted with active users, they may negatively impact user experience. A promising alternative is synthetic feedback, where evaluations are conducted by other large language models, including reward models. While this eliminates the need for costly human annotations, it introduces biases that may distort the evaluation process. In this work, we propose a statistically principled framework that integrates human and synthetic feedback to reduce reliance on human annotations while maintaining unbiased win-rate calculations. Our experiments demonstrate a reduction in human annotations by up to 12.2% with an off-the-shelf synthetic evaluator and up to 24.8% with a finetuned variant. Apart from being generalizable, scalable, and free of hyper-parameter tuning, our method offers predictable annotation savings, which can be estimated based on data-dependent characteristics.
LLM Critics Help Catch Bugs in Mathematics: Towards a Better Mathematical Verifier with Natural Language Feedback
Mathematical verfier achieves success in mathematical reasoning tasks by validating the correctness of solutions. However, existing verifiers are trained with binary classification labels, which are not informative enough for the model to accurately assess the solutions. To mitigate the aforementioned insufficiency of binary labels, we introduce step-wise natural language feedbacks as rationale labels (i.e., the correctness of the current step and the explanations). In this paper, we propose Math-Minos, a natural language feedback enhanced verifier by constructing automatically-generated training data and a two-stage training paradigm for effective training and efficient inference. Our experiments reveal that a small set (30k) of natural language feedbacks can significantly boost the performance of the verifier by the accuracy of 1.6\% (86.6\% rightarrow 88.2\%) on GSM8K and 0.8\% (37.8\% rightarrow 38.6\%) on MATH. We have released our code and data for further exploration.
FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large Language Models in Federated Learning
LLMs have demonstrated great capabilities in various NLP tasks. Different entities can further improve the performance of those LLMs on their specific downstream tasks by fine-tuning LLMs. When several entities have similar interested tasks, but their data cannot be shared because of privacy concerns regulations, federated learning (FL) is a mainstream solution to leverage the data of different entities. However, fine-tuning LLMs in federated learning settings still lacks adequate support from existing FL frameworks because it has to deal with optimizing the consumption of significant communication and computational resources, data preparation for different tasks, and distinct information protection demands. This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution, which consists of the following components: (1) we build an end-to-end benchmarking pipeline, automizing the processes of dataset preprocessing, federated fine-tuning execution, and performance evaluation on federated LLM fine-tuning; (2) we provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios with low communication and computation costs, even without accessing the full model; (3) we adopt several accelerating and resource-efficient operators for fine-tuning LLMs with limited resources and the flexible pluggable sub-routines for interdisciplinary study. We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings, which also yields valuable insights into federated fine-tuning LLMs for the research community. To facilitate further research and adoption, we release FS-LLM at https://github.com/alibaba/FederatedScope/tree/llm.
MixLLM: LLM Quantization with Global Mixed-precision between Output-features and Highly-efficient System Design
Quantization has become one of the most effective methodologies to compress LLMs into smaller size. However, the existing quantization solutions still show limitations of either non-negligible accuracy drop or system inefficiency. In this paper, we make a comprehensive analysis of the general quantization principles on their effect to the triangle of accuracy, memory consumption and system efficiency. We propose MixLLM that explores the new optimization space of mixed-precision quantization between output features based on the insight that different output features matter differently in the model. MixLLM identifies the output features with high salience in the global view rather than within each single layer, effectively assigning the larger bit-width to output features that need it most to achieve good accuracy with low memory consumption. We present the sweet spot of quantization configuration of algorithm-system co-design that leads to high accuracy and system efficiency. To address the system challenge, we design the two-step dequantization to make use of the int8 Tensor Core easily and fast data type conversion to reduce dequantization overhead significantly, and present the software pipeline to overlap the memory access, dequantization and the MatMul to the best. Extensive experiments show that with only 10% more bits, the PPL increasement can be reduced from about 0.5 in SOTA to within 0.2 for Llama 3.1 70B, while on average MMLU-Pro improves by 0.93 over the SOTA of three popular models. In addition to its superior accuracy, MixLLM also achieves state-of-the-art system efficiency.
The Importance of Directional Feedback for LLM-based Optimizers
We study the potential of using large language models (LLMs) as an interactive optimizer for solving maximization problems in a text space using natural language and numerical feedback. Inspired by the classical optimization literature, we classify the natural language feedback into directional and non-directional, where the former is a generalization of the first-order feedback to the natural language space. We find that LLMs are especially capable of optimization when they are provided with {directional feedback}. Based on this insight, we design a new LLM-based optimizer that synthesizes directional feedback from the historical optimization trace to achieve reliable improvement over iterations. Empirically, we show our LLM-based optimizer is more stable and efficient in solving optimization problems, from maximizing mathematical functions to optimizing prompts for writing poems, compared with existing techniques.
Does Few-Shot Learning Help LLM Performance in Code Synthesis?
Large language models (LLMs) have made significant strides at code generation through improved model design, training, and chain-of-thought. However, prompt-level optimizations remain an important yet under-explored aspect of LLMs for coding. This work focuses on the few-shot examples present in most code generation prompts, offering a systematic study on whether few-shot examples improve LLM's coding capabilities, which few-shot examples have the largest impact, and how to select impactful examples. Our work offers 2 approaches for selecting few-shot examples, a model-free method, CODEEXEMPLAR-FREE, and a model-based method, CODEEXEMPLAR-BASED. The 2 methods offer a trade-off between improved performance and reliance on training data and interpretability. Both methods significantly improve CodeLlama's coding ability across the popular HumanEval+ coding benchmark. In summary, our work provides valuable insights into how to pick few-shot examples in code generation prompts to improve LLM code generation capabilities.
Robots Can Feel: LLM-based Framework for Robot Ethical Reasoning
This paper presents the development of a novel ethical reasoning framework for robots. "Robots Can Feel" is the first system for robots that utilizes a combination of logic and human-like emotion simulation to make decisions in morally complex situations akin to humans. The key feature of the approach is the management of the Emotion Weight Coefficient - a customizable parameter to assign the role of emotions in robot decision-making. The system aims to serve as a tool that can equip robots of any form and purpose with ethical behavior close to human standards. Besides the platform, the system is independent of the choice of the base model. During the evaluation, the system was tested on 8 top up-to-date LLMs (Large Language Models). This list included both commercial and open-source models developed by various companies and countries. The research demonstrated that regardless of the model choice, the Emotions Weight Coefficient influences the robot's decision similarly. According to ANOVA analysis, the use of different Emotion Weight Coefficients influenced the final decision in a range of situations, such as in a request for a dietary violation F(4, 35) = 11.2, p = 0.0001 and in an animal compassion situation F(4, 35) = 8.5441, p = 0.0001. A demonstration code repository is provided at: https://github.com/TemaLykov/robots_can_feel
A Web-Based Solution for Federated Learning with LLM-Based Automation
Federated Learning (FL) offers a promising approach for collaborative machine learning across distributed devices. However, its adoption is hindered by the complexity of building reliable communication architectures and the need for expertise in both machine learning and network programming. This paper presents a comprehensive solution that simplifies the orchestration of FL tasks while integrating intent-based automation. We develop a user-friendly web application supporting the federated averaging (FedAvg) algorithm, enabling users to configure parameters through an intuitive interface. The backend solution efficiently manages communication between the parameter server and edge nodes. We also implement model compression and scheduling algorithms to optimize FL performance. Furthermore, we explore intent-based automation in FL using a fine-tuned Language Model (LLM) trained on a tailored dataset, allowing users to conduct FL tasks using high-level prompts. We observe that the LLM-based automated solution achieves comparable test accuracy to the standard web-based solution while reducing transferred bytes by up to 64% and CPU time by up to 46% for FL tasks. Also, we leverage the neural architecture search (NAS) and hyperparameter optimization (HPO) using LLM to improve the performance. We observe that by using this approach test accuracy can be improved by 10-20% for the carried out FL tasks.
RLTHF: Targeted Human Feedback for LLM Alignment
Fine-tuning large language models (LLMs) to align with user preferences is challenging due to the high cost of quality human annotations in Reinforcement Learning from Human Feedback (RLHF) and the generalizability limitations of AI Feedback. To address these challenges, we propose RLTHF, a human-AI hybrid framework that combines LLM-based initial alignment with selective human annotations to achieve full-human annotation alignment with minimal effort. RLTHF identifies hard-to-annotate samples mislabeled by LLMs using a reward model's reward distribution and iteratively enhances alignment by integrating strategic human corrections while leveraging LLM's correctly labeled samples. Evaluations on HH-RLHF and TL;DR datasets show that RLTHF reaches full-human annotation-level alignment with only 6-7% of the human annotation effort. Furthermore, models trained on RLTHF's curated datasets for downstream tasks outperform those trained on fully human-annotated datasets, underscoring the effectiveness of RLTHF's strategic data curation.
LLM-based Rewriting of Inappropriate Argumentation using Reinforcement Learning from Machine Feedback
Ensuring that online discussions are civil and productive is a major challenge for social media platforms. Such platforms usually rely both on users and on automated detection tools to flag inappropriate arguments of other users, which moderators then review. However, this kind of post-hoc moderation is expensive and time-consuming, and moderators are often overwhelmed by the amount and severity of flagged content. Instead, a promising alternative is to prevent negative behavior during content creation. This paper studies how inappropriate language in arguments can be computationally mitigated. We propose a reinforcement learning-based rewriting approach that balances content preservation and appropriateness based on existing classifiers, prompting an instruction-finetuned large language model (LLM) as our initial policy. Unlike related style transfer tasks, rewriting inappropriate arguments allows deleting and adding content permanently. It is therefore tackled on document level rather than sentence level. We evaluate different weighting schemes for the reward function in both absolute and relative human assessment studies. Systematic experiments on non-parallel data provide evidence that our approach can mitigate the inappropriateness of arguments while largely preserving their content. It significantly outperforms competitive baselines, including few-shot learning, prompting, and humans.
LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named Entity Recognition
Despite the impressive capabilities of large language models (LLMs), their performance on information extraction tasks is still not entirely satisfactory. However, their remarkable rewriting capabilities and extensive world knowledge offer valuable insights to improve these tasks. In this paper, we propose LLM-DA, a novel data augmentation technique based on LLMs for the few-shot NER task. To overcome the limitations of existing data augmentation methods that compromise semantic integrity and address the uncertainty inherent in LLM-generated text, we leverage the distinctive characteristics of the NER task by augmenting the original data at both the contextual and entity levels. Our approach involves employing 14 contextual rewriting strategies, designing entity replacements of the same type, and incorporating noise injection to enhance robustness. Extensive experiments demonstrate the effectiveness of our approach in enhancing NER model performance with limited data. Furthermore, additional analyses provide further evidence supporting the assertion that the quality of the data we generate surpasses that of other existing methods.
LLM Review: Enhancing Creative Writing via Blind Peer Review Feedback
Large Language Models (LLMs) often struggle with creative generation, and multi-agent frameworks that improve reasoning through interaction can paradoxically hinder creativity by inducing content homogenization. We introduce LLM Review, a peer-review-inspired framework implementing Blind Peer Review: agents exchange targeted feedback while revising independently, preserving divergent creative trajectories. To enable rigorous evaluation, we propose SciFi-100, a science fiction writing dataset with a unified framework combining LLM-as-a-judge scoring, human annotation, and rule-based novelty metrics. Experiments demonstrate that LLM Review consistently outperforms multi-agent baselines, and smaller models with our framework can surpass larger single-agent models, suggesting interaction structure may substitute for model scale.
Just-in-time Episodic Feedback Hinter: Leveraging Offline Knowledge to Improve LLM Agents Adaptation
Large language model (LLM) agents perform well in sequential decision-making tasks, but improving them on unfamiliar domains often requires costly online interactions or fine-tuning on large expert datasets. These strategies are impractical for closed-source models and expensive for open-source ones, with risks of catastrophic forgetting. Offline trajectories offer reusable knowledge, yet demonstration-based methods struggle because raw traces are long, noisy, and tied to specific tasks. We present Just-in-time Episodic Feedback Hinter (JEF Hinter), an agentic system that distills offline traces into compact, context-aware hints. A zooming mechanism highlights decisive steps in long trajectories, capturing both strategies and pitfalls. Unlike prior methods, JEF Hinter leverages both successful and failed trajectories, extracting guidance even when only failure data is available, while supporting parallelized hint generation and benchmark-independent prompting. At inference, a retriever selects relevant hints for the current state, providing targeted guidance with transparency and traceability. Experiments on MiniWoB++, WorkArena-L1, and WebArena-Lite show that JEF Hinter consistently outperforms strong baselines, including human- and document-based hints.
Tracking the Feature Dynamics in LLM Training: A Mechanistic Study
Understanding training dynamics and feature evolution is crucial for the mechanistic interpretability of large language models (LLMs). Although sparse autoencoders (SAEs) have been used to identify features within LLMs, a clear picture of how these features evolve during training remains elusive. In this study, we: (1) introduce SAE-Track, a novel method to efficiently obtain a continual series of SAEs; (2) mechanistically investigate feature formation and develop a progress measure for it ; and (3) analyze and visualize feature drift during training. Our work provides new insights into the dynamics of features in LLMs, enhancing our understanding of training mechanisms and feature evolution.
Boosting LLM Reasoning: Push the Limits of Few-shot Learning with Reinforced In-Context Pruning
Large language models (LLMs) have shown impressive capabilities in various tasks, yet they still struggle with math reasoning. Despite efforts to optimize Chain-of-Thoughts (CoT) prompts and fine-tune LLMs, the potential of few-shot learning remains unexplored. In this work, we propose CoT-Max, a novel approach pushing the boundaries of few-shot CoT learning to improve LLM math reasoning capabilities. CoT-Max addresses the challenges of the selection of useful examples and limited number of examples due to restricted context window length. Inspired by our observation that natural language inputs contain many redundancy, we propose a coarse-to-fine pruner as a plug-and-play module for LLMs, which first identifies crucial CoT examples from a large batch and then further prunes unimportant tokens. To train the pruner, we collect a math reasoning dataset with diverse difficulty and steps, introduce a reward to measure both the input's effectiveness for math reasoning and token length constraints, and propose a novel training approach with reinforcement learning. As a result, CoT-Max significantly outperforms CoT and few-shot prompting baselines across various LLMs (LLaMA2-7B, 13B, 70B) and 5 mathematical datasets, achieving up to 4.55% absolute improvements. Remarkably, without any fine-tuning, LLaMA2-70B with CoT-Max surpasses GPT-3.5 and a wide range of larger LLMs (PaLM, Minerva, etc.) on the GSM8K.
Critique-GRPO: Advancing LLM Reasoning with Natural Language and Numerical Feedback
Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar rewards, have significantly enhanced the complex reasoning capabilities of large language models (LLMs). Despite this success, we identify three key challenges encountered by RL with solely numerical feedback: performance plateaus, limited effectiveness of self-reflection, and persistent failures. We then demonstrate that RL-finetuned models, even after exhibiting performance plateaus, can generate correct refinements on persistently failed problems by leveraging natural language feedback in the form of critiques. Building on this insight, we propose Critique-GRPO, an online RL framework that integrates both natural language and numerical feedback for effective policy optimization. Critique-GRPO enables LLMs to learn from initial responses and critique-guided refinements simultaneously while maintaining exploration. Extensive experiments using Qwen2.5-7B-Base and Qwen3-8B-Base show that Critique-GRPO consistently outperforms supervised learning-based and RL-based fine-tuning approaches across eight challenging mathematical, STEM, and general reasoning tasks, improving average pass@1 scores by approximately 4.5% and 5%, respectively. Notably, Critique-GRPO surpasses a strong baseline that incorporates expert demonstrations within online RL. Further analysis reveals two critical insights about policy exploration: (1) higher entropy does not always guarantee efficient learning from exploration, and (2) longer responses do not necessarily lead to more effective exploration.
Rapid Response: Mitigating LLM Jailbreaks with a Few Examples
As large language models (LLMs) grow more powerful, ensuring their safety against misuse becomes crucial. While researchers have focused on developing robust defenses, no method has yet achieved complete invulnerability to attacks. We propose an alternative approach: instead of seeking perfect adversarial robustness, we develop rapid response techniques to look to block whole classes of jailbreaks after observing only a handful of attacks. To study this setting, we develop RapidResponseBench, a benchmark that measures a defense's robustness against various jailbreak strategies after adapting to a few observed examples. We evaluate five rapid response methods, all of which use jailbreak proliferation, where we automatically generate additional jailbreaks similar to the examples observed. Our strongest method, which fine-tunes an input classifier to block proliferated jailbreaks, reduces attack success rate by a factor greater than 240 on an in-distribution set of jailbreaks and a factor greater than 15 on an out-of-distribution set, having observed just one example of each jailbreaking strategy. Moreover, further studies suggest that the quality of proliferation model and number of proliferated examples play an key role in the effectiveness of this defense. Overall, our results highlight the potential of responding rapidly to novel jailbreaks to limit LLM misuse.
Static Analysis as a Feedback Loop: Enhancing LLM-Generated Code Beyond Correctness
Large language models (LLMs) have demonstrated impressive capabilities in code generation, achieving high scores on benchmarks such as HumanEval and MBPP. However, these benchmarks primarily assess functional correctness and neglect broader dimensions of code quality, including security, reliability, readability, and maintainability. In this work, we systematically evaluate the ability of LLMs to generate high-quality code across multiple dimensions using the PythonSecurityEval benchmark. We introduce an iterative static analysis-driven prompting algorithm that leverages Bandit and Pylint to identify and resolve code quality issues. Our experiments with GPT-4o show substantial improvements: security issues reduced from >40% to 13%, readability violations from >80% to 11%, and reliability warnings from >50% to 11% within ten iterations. These results demonstrate that LLMs, when guided by static analysis feedback, can significantly enhance code quality beyond functional correctness.
$C^2$: Scalable Auto-Feedback for LLM-based Chart Generation
Generating high-quality charts with Large Language Models (LLMs) presents significant challenges due to limited data and the high cost of scaling through human curation. langle instruction, data, code rangle triplets are scarce and expensive to manually curate as their creation demands technical expertise. To address this scalability challenge, we introduce a reference-free automatic feedback generator, which eliminates the need for costly human intervention. Our novel framework, C^2, consists of (1) an automatic feedback provider (ChartAF) and (2) a diverse, reference-free dataset (ChartUIE-8K). The results are compelling: in our first experiment, 74% of respondents strongly preferred, and 10% preferred, the results after feedback. The second post-feedback experiment demonstrates that ChartAF outperform nine baselines. Moreover, ChartUIE-8K significantly improves data diversity by increasing queries, datasets, and chart types by 5982%, 1936%, and 91%, respectively, over benchmarks. Finally, a study of LLM users revealed that 94% of participants preferred ChartUIE-8K's queries, with 93% deeming them aligned with real-world use cases. Core contributions are available as open-source at chartsquared.github.io, with ample qualitative examples.
Getting Inspiration for Feature Elicitation: App Store- vs. LLM-based Approach
Over the past decade, app store (AppStore)-inspired requirements elicitation has proven to be highly beneficial. Developers often explore competitors' apps to gather inspiration for new features. With the advance of Generative AI, recent studies have demonstrated the potential of large language model (LLM)-inspired requirements elicitation. LLMs can assist in this process by providing inspiration for new feature ideas. While both approaches are gaining popularity in practice, there is a lack of insight into their differences. We report on a comparative study between AppStore- and LLM-based approaches for refining features into sub-features. By manually analyzing 1,200 sub-features recommended from both approaches, we identified their benefits, challenges, and key differences. While both approaches recommend highly relevant sub-features with clear descriptions, LLMs seem more powerful particularly concerning novel unseen app scopes. Moreover, some recommended features are imaginary with unclear feasibility, which suggests the importance of a human-analyst in the elicitation loop.
ToolSafe: Enhancing Tool Invocation Safety of LLM-based agents via Proactive Step-level Guardrail and Feedback
While LLM-based agents can interact with environments via invoking external tools, their expanded capabilities also amplify security risks. Monitoring step-level tool invocation behaviors in real time and proactively intervening before unsafe execution is critical for agent deployment, yet remains under-explored. In this work, we first construct TS-Bench, a novel benchmark for step-level tool invocation safety detection in LLM agents. We then develop a guardrail model, TS-Guard, using multi-task reinforcement learning. The model proactively detects unsafe tool invocation actions before execution by reasoning over the interaction history. It assesses request harmfulness and action-attack correlations, producing interpretable and generalizable safety judgments and feedback. Furthermore, we introduce TS-Flow, a guardrail-feedback-driven reasoning framework for LLM agents, which reduces harmful tool invocations of ReAct-style agents by 65 percent on average and improves benign task completion by approximately 10 percent under prompt injection attacks.
PlotGen: Multi-Agent LLM-based Scientific Data Visualization via Multimodal Feedback
Scientific data visualization is pivotal for transforming raw data into comprehensible visual representations, enabling pattern recognition, forecasting, and the presentation of data-driven insights. However, novice users often face difficulties due to the complexity of selecting appropriate tools and mastering visualization techniques. Large Language Models (LLMs) have recently demonstrated potential in assisting code generation, though they struggle with accuracy and require iterative debugging. In this paper, we propose PlotGen, a novel multi-agent framework aimed at automating the creation of precise scientific visualizations. PlotGen orchestrates multiple LLM-based agents, including a Query Planning Agent that breaks down complex user requests into executable steps, a Code Generation Agent that converts pseudocode into executable Python code, and three retrieval feedback agents - a Numeric Feedback Agent, a Lexical Feedback Agent, and a Visual Feedback Agent - that leverage multimodal LLMs to iteratively refine the data accuracy, textual labels, and visual correctness of generated plots via self-reflection. Extensive experiments show that PlotGen outperforms strong baselines, achieving a 4-6 percent improvement on the MatPlotBench dataset, leading to enhanced user trust in LLM-generated visualizations and improved novice productivity due to a reduction in debugging time needed for plot errors.
PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback
Large Language Models (LLMs) are widely adopted for assisting in software development tasks, yet their performance evaluations have narrowly focused on the functional correctness of generated code. Human programmers, however, require LLM-generated code to be not only correct but also optimally efficient. We propose PerfCodeGen, a training-free framework that enhances the performance of LLM-generated code by incorporating feedback based on runtime during test case execution into the self-refinement iterations. With PerfCodeGen, we achieve speedups for a significantly higher proportion of problems compared to using the base LLM with sophisticated prompting techniques. Applied to open language models like Phi-3-mini, PerfCodeGen achieves runtime efficiency comparable to prompting powerful closed models like GPT-4. We achieve state-of-the-art runtime efficiency on benchmarks such as HumanEval, MBPP, and APPS, frequently surpassing the ground truth reference solutions with PerfCodeGen using GPT-3.5 and GPT-4. Additionally, we demonstrate the effectiveness of our approach in enhancing code quality across a range of open LLMs of varying sizes including Phi-3-mini, Llama 3 8B, Mixtral 8x7B, Command R, and Llama 3 70B.
PFEA: An LLM-based High-Level Natural Language Planning and Feedback Embodied Agent for Human-Centered AI
The rapid advancement of Large Language Models (LLMs) has marked a significant breakthrough in Artificial Intelligence (AI), ushering in a new era of Human-centered Artificial Intelligence (HAI). HAI aims to better serve human welfare and needs, thereby placing higher demands on the intelligence level of robots, particularly in aspects such as natural language interaction, complex task planning, and execution. Intelligent agents powered by LLMs have opened up new pathways for realizing HAI. However, existing LLM-based embodied agents often lack the ability to plan and execute complex natural language control tasks online. This paper explores the implementation of intelligent robotic manipulating agents based on Vision-Language Models (VLMs) in the physical world. We propose a novel embodied agent framework for robots, which comprises a human-robot voice interaction module, a vision-language agent module and an action execution module. The vision-language agent itself includes a vision-based task planner, a natural language instruction converter, and a task performance feedback evaluator. Experimental results demonstrate that our agent achieves a 28\% higher average task success rate in both simulated and real environments compared to approaches relying solely on LLM+CLIP, significantly improving the execution success rate of high-level natural language instruction tasks.
Line of Duty: Evaluating LLM Self-Knowledge via Consistency in Feasibility Boundaries
As LLMs grow more powerful, their most profound achievement may be recognising when to say "I don't know". Existing studies on LLM self-knowledge have been largely constrained by human-defined notions of feasibility, often neglecting the reasons behind unanswerability by LLMs and failing to study deficient types of self-knowledge. This study aims to obtain intrinsic insights into different types of LLM self-knowledge with a novel methodology: allowing them the flexibility to set their own feasibility boundaries and then analysing the consistency of these limits. We find that even frontier models like GPT-4o and Mistral Large are not sure of their own capabilities more than 80% of the time, highlighting a significant lack of trustworthiness in responses. Our analysis of confidence balance in LLMs indicates that models swing between overconfidence and conservatism in feasibility boundaries depending on task categories and that the most significant self-knowledge weaknesses lie in temporal awareness and contextual understanding. These difficulties in contextual comprehension additionally lead models to question their operational boundaries, resulting in considerable confusion within the self-knowledge of LLMs. We make our code and results available publicly at https://github.com/knowledge-verse-ai/LLM-Self_Knowledge_Eval
Pairwise Proximal Policy Optimization: Harnessing Relative Feedback for LLM Alignment
Large Language Models (LLMs) can acquire extensive world knowledge through pre-training on large corpora. However, due to exposure to low-quality data, LLMs may exhibit harmful behavior without aligning with human values. The dominant approach for steering LLMs towards beneficial behavior involves Reinforcement Learning with Human Feedback (RLHF), with Proximal Policy Optimization (PPO) serving as the default RL optimizer. Despite its effectiveness, PPO has limitations when optimizing rewards trained from comparison-based loss. Primarily, PPO is not invariant to equivalent reward functions containing identical preference information due to the need to calibrate the reward scale. Additionally, PPO's necessity for token-wise updates introduces complexity in both function approximation and algorithm design compared to trajectory-wise optimization. This paper proposes a new framework, reinforcement learning with relative feedback, and a novel trajectory-wise policy gradient algorithm, Pairwise Proximal Policy Optimization (P3O) that operates directly on comparative rewards. We show theoretically that P3O is invariant to equivalent rewards and avoids the complexity of PPO. Empirical evaluations demonstrate that P3O outperforms PPO in the KL-Reward trade-off and can align with human preferences as well as or better than prior methods. In summary, this work introduces a simpler yet effective approach for aligning LLMs to human preferences through relative feedback.
Sketch Then Generate: Providing Incremental User Feedback and Guiding LLM Code Generation through Language-Oriented Code Sketches
Crafting effective prompts for code generation or editing with Large Language Models (LLMs) is not an easy task. Particularly, the absence of immediate, stable feedback during prompt crafting hinders effective interaction, as users are left to mentally imagine possible outcomes until the code is generated. In response, we introduce Language-Oriented Code Sketching, an interactive approach that provides instant, incremental feedback in the form of code sketches (i.e., incomplete code outlines) during prompt crafting. This approach converts a prompt into a code sketch by leveraging the inherent linguistic structures within the prompt and applying classic natural language processing techniques. The sketch then serves as an intermediate placeholder that not only previews the intended code structure but also guides the LLM towards the desired code, thereby enhancing human-LLM interaction. We conclude by discussing the approach's applicability and future plans.
PartnerMAS: An LLM Hierarchical Multi-Agent Framework for Business Partner Selection on High-Dimensional Features
High-dimensional decision-making tasks, such as business partner selection, involve evaluating large candidate pools with heterogeneous numerical, categorical, and textual features. While large language models (LLMs) offer strong in-context reasoning capabilities, single-agent or debate-style systems often struggle with scalability and consistency in such settings. We propose PartnerMAS, a hierarchical multi-agent framework that decomposes evaluation into three layers: a Planner Agent that designs strategies, Specialized Agents that perform role-specific assessments, and a Supervisor Agent that integrates their outputs. To support systematic evaluation, we also introduce a curated benchmark dataset of venture capital co-investments, featuring diverse firm attributes and ground-truth syndicates. Across 140 cases, PartnerMAS consistently outperforms single-agent and debate-based multi-agent baselines, achieving up to 10--15\% higher match rates. Analysis of agent reasoning shows that planners are most responsive to domain-informed prompts, specialists produce complementary feature coverage, and supervisors play an important role in aggregation. Our findings demonstrate that structured collaboration among LLM agents can generate more robust outcomes than scaling individual models, highlighting PartnerMAS as a promising framework for high-dimensional decision-making in data-rich domains.
ToolPlanner: A Tool Augmented LLM for Multi Granularity Instructions with Path Planning and Feedback
Recently, tool-augmented LLMs have gained increasing attention. Given an instruction, tool-augmented LLMs can interact with various external tools in multiple rounds and provide a final answer. However, previous LLMs were trained on overly detailed instructions, which included API names or parameters, while real users would not explicitly mention these API details. This leads to a gap between trained LLMs and real-world scenarios. In addition, most works ignore whether the interaction process follows the instruction. To address these issues, we constructed a training dataset called MGToolBench, which contains statement and category-level instructions to better reflect real-world scenarios. In addition, we propose ToolPlanner, a two-stage reinforcement learning framework that utilizes path planning and two feedback mechanisms to enhance the LLM's task completion and instruction-following capabilities. Experimental results show that ToolPlanner significantly improves the Match Rate, Pass Rate and Win Rate by 26.8%, 20.2%, and 5.6% compared to the SOTA model. Human evaluation verifies that the multi-granularity instructions can better align with users' usage habits. Our data and code will be released upon acceptance.
