new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Uni-X: Mitigating Modality Conflict with a Two-End-Separated Architecture for Unified Multimodal Models

Unified Multimodal Models (UMMs) built on shared autoregressive (AR) transformers are attractive for their architectural simplicity. However, we identify a critical limitation: when trained on multimodal inputs, modality-shared transformers suffer from severe gradient conflicts between vision and text, particularly in shallow and deep layers. We trace this issue to the fundamentally different low-level statistical properties of images and text, while noting that conflicts diminish in middle layers where representations become more abstract and semantically aligned. To overcome this challenge, we propose Uni-X, a two-end-separated, middle-shared architecture. Uni-X dedicates its initial and final layers to modality-specific processing, while maintaining shared parameters in the middle layers for high-level semantic fusion. This X-shaped design not only eliminates gradient conflicts at both ends but also further alleviates residual conflicts in the shared layers. Extensive experiments validate the effectiveness of Uni-X. Under identical training conditions, Uni-X achieves superior training efficiency compared to strong baselines. When scaled to 3B parameters with larger training data, Uni-X matches or surpasses 7B AR-based UMMs, achieving a GenEval score of 82 for image generation alongside strong performance in text and vision understanding tasks. These results establish Uni-X as a parameter-efficient and scalable foundation for future unified multimodal modeling. Our code is available at https://github.com/CURRENTF/Uni-X

  • 5 authors
·
Sep 29, 2025

Benchmarking and Bridging Emotion Conflicts for Multimodal Emotion Reasoning

Despite their strong performance in multimodal emotion reasoning, existing Multimodal Large Language Models (MLLMs) often overlook the scenarios involving emotion conflicts, where emotional cues from different modalities are inconsistent. To fill this gap, we first introduce CA-MER, a new benchmark designed to examine MLLMs under realistic emotion conflicts. It consists of three subsets: video-aligned, audio-aligned, and consistent, where only one or all modalities reflect the true emotion. However, evaluations on our CA-MER reveal that current state-of-the-art emotion MLLMs systematically over-rely on audio signal during emotion conflicts, neglecting critical cues from visual modality. To mitigate this bias, we propose MoSEAR, a parameter-efficient framework that promotes balanced modality integration. MoSEAR consists of two modules: (1)MoSE, modality-specific experts with a regularized gating mechanism that reduces modality bias in the fine-tuning heads; and (2)AR, an attention reallocation mechanism that rebalances modality contributions in frozen backbones during inference. Our framework offers two key advantages: it mitigates emotion conflicts and improves performance on consistent samples-without incurring a trade-off between audio and visual modalities. Experiments on multiple benchmarks-including MER2023, EMER, DFEW, and our CA-MER-demonstrate that MoSEAR achieves state-of-the-art performance, particularly under modality conflict conditions.

  • 5 authors
·
Aug 2, 2025

OmniHuman-1.5: Instilling an Active Mind in Avatars via Cognitive Simulation

Existing video avatar models can produce fluid human animations, yet they struggle to move beyond mere physical likeness to capture a character's authentic essence. Their motions typically synchronize with low-level cues like audio rhythm, lacking a deeper semantic understanding of emotion, intent, or context. To bridge this gap, we propose a framework designed to generate character animations that are not only physically plausible but also semantically coherent and expressive. Our model, OmniHuman-1.5, is built upon two key technical contributions. First, we leverage Multimodal Large Language Models to synthesize a structured textual representation of conditions that provides high-level semantic guidance. This guidance steers our motion generator beyond simplistic rhythmic synchronization, enabling the production of actions that are contextually and emotionally resonant. Second, to ensure the effective fusion of these multimodal inputs and mitigate inter-modality conflicts, we introduce a specialized Multimodal DiT architecture with a novel Pseudo Last Frame design. The synergy of these components allows our model to accurately interpret the joint semantics of audio, images, and text, thereby generating motions that are deeply coherent with the character, scene, and linguistic content. Extensive experiments demonstrate that our model achieves leading performance across a comprehensive set of metrics, including lip-sync accuracy, video quality, motion naturalness and semantic consistency with textual prompts. Furthermore, our approach shows remarkable extensibility to complex scenarios, such as those involving multi-person and non-human subjects. Homepage: https://omnihuman-lab.github.io/v1_5/

  • 9 authors
·
Aug 26, 2025 2

Dual-Stream Diffusion for World-Model Augmented Vision-Language-Action Model

Recently, augmenting Vision-Language-Action models (VLAs) with world modeling has shown promise in improving robotic policy learning. However, it remains challenging to jointly predict next-state observations and action sequences because of the inherent difference between the two modalities. To address this, we propose DUal-STream diffusion (DUST), a world-model augmented VLA framework that handles the modality conflict and enhances the performance of VLAs across diverse tasks. Specifically, we propose a multimodal diffusion transformer architecture that explicitly maintains separate modality streams while still enabling cross-modal knowledge sharing. In addition, we introduce independent noise perturbations for each modality and a decoupled flow-matching loss. This design enables the model to learn the joint distribution in a bidirectional manner while avoiding the need for a unified latent space. Based on the decoupling of modalities during training, we also introduce a joint sampling method that supports test-time scaling, where action and vision tokens evolve asynchronously at different rates. Through experiments on simulated benchmarks such as RoboCasa and GR-1, DUST achieves up to 6% gains over baseline methods, while our test-time scaling approach provides an additional 2-5% boost. On real-world tasks with the Franka Research 3, DUST improves success rates by 13%, confirming its effectiveness beyond simulation. Furthermore, pre-training on action-free videos from BridgeV2 yields significant transfer gains on RoboCasa, underscoring DUST's potential for large-scale VLA pretraining.

  • 5 authors
·
Oct 31, 2025 1

OmniPlay: Benchmarking Omni-Modal Models on Omni-Modal Game Playing

While generalist foundation models like Gemini and GPT-4o demonstrate impressive multi-modal competence, existing evaluations fail to test their intelligence in dynamic, interactive worlds. Static benchmarks lack agency, while interactive benchmarks suffer from a severe modal bottleneck, typically ignoring crucial auditory and temporal cues. To bridge this evaluation chasm, we introduce OmniPlay, a diagnostic benchmark designed not just to evaluate, but to probe the fusion and reasoning capabilities of agentic models across the full sensory spectrum. Built on a core philosophy of modality interdependence, OmniPlay comprises a suite of five game environments that systematically create scenarios of both synergy and conflict, forcing agents to perform genuine cross-modal reasoning. Our comprehensive evaluation of six leading omni-modal models reveals a critical dichotomy: they exhibit superhuman performance on high-fidelity memory tasks but suffer from systemic failures in challenges requiring robust reasoning and strategic planning. We demonstrate that this fragility stems from brittle fusion mechanisms, which lead to catastrophic performance degradation under modality conflict and uncover a counter-intuitive "less is more" paradox, where removing sensory information can paradoxically improve performance. Our findings suggest that the path toward robust AGI requires a research focus beyond scaling to explicitly address synergistic fusion. Our platform is available for anonymous review at https://github.com/fuqingbie/omni-game-benchmark.

  • 9 authors
·
Aug 6, 2025

MINT: Multi-modal Chain of Thought in Unified Generative Models for Enhanced Image Generation

Unified generative models have demonstrated extraordinary performance in both text and image generation. However, they tend to underperform when generating intricate images with various interwoven conditions, which is hard to solely rely on straightforward text-to-image generation. In response to this challenge, we introduce MINT, an innovative unified generative model, empowered with native multimodal chain of thought (MCoT) for enhanced image generation for the first time. Firstly, we design Mixture of Transformer Experts (MTXpert), an expert-parallel structure that effectively supports both natural language generation (NLG) and visual capabilities, while avoiding potential modality conflicts that could hinder the full potential of each modality. Building on this, we propose an innovative MCoT training paradigm, a step-by-step approach to multimodal thinking, reasoning, and reflection specifically designed to enhance image generation. This paradigm equips MINT with nuanced, element-wise decoupled alignment and a comprehensive understanding of textual and visual components. Furthermore, it fosters advanced multimodal reasoning and self-reflection, enabling the construction of images that are firmly grounded in the logical relationships between these elements. Notably, MINT has been validated to exhibit superior performance across multiple benchmarks for text-to-image (T2I) and image-to-text (I2T) tasks.

  • 15 authors
·
Mar 3, 2025

Mitigating Intra- and Inter-modal Forgetting in Continual Learning of Unified Multimodal Models

Unified Multimodal Generative Models (UMGMs) unify visual understanding and image generation within a single autoregressive framework. However, their ability to continually learn new tasks is severely hindered by catastrophic forgetting, both within a modality (intra-modal) and across modalities (inter-modal). While intra-modal forgetting has been studied in prior continual learning (CL) work, inter-modal forgetting remains largely unexplored. In this paper, we identify and empirically validate this phenomenon in UMGMs and provide a theoretical explanation rooted in gradient conflict between modalities. To address both intra- and inter-modal forgetting, we propose Modality-Decoupled Experts (MoDE), a lightweight and scalable architecture that isolates modality-specific updates to mitigate the gradient conflict and leverages knowledge distillation to prevent catastrophic forgetting and preserve pre-trained capabilities. Unlike previous CL methods that remain modality-coupled and suffer from modality gradient conflict, MoDE explicitly decouples modalities to prevent interference. Experiments across diverse benchmarks demonstrate that MoDE significantly mitigates both inter- and intra-modal forgetting, outperforming prior CL baselines in unified multimodal generation settings. Codes will be publicly available: https://github.com/Christina200/MoDE-official.git

  • 3 authors
·
Dec 2, 2025 2

When Modalities Conflict: How Unimodal Reasoning Uncertainty Governs Preference Dynamics in MLLMs

Multimodal large language models (MLLMs) must resolve conflicts when different modalities provide contradictory information, a process we term modality following. Prior work measured this behavior only with coarse dataset-level statistics, overlooking the influence of model's confidence in unimodal reasoning. In this paper, we introduce a new framework that decomposes modality following into two fundamental factors: relative reasoning uncertainty (the case-specific confidence gap between unimodal predictions) and inherent modality preference( a model's stable bias when uncertainties are balanced). To validate this framework, we construct a controllable dataset that systematically varies the reasoning difficulty of visual and textual inputs. Using entropy as a fine-grained uncertainty metric, we uncover a universal law: the probability of following a modality decreases monotonically as its relative uncertainty increases. At the relative difficulty level where the model tends to follow both modalities with comparable probability what we call the balance point, a practical indicator of the model's inherent preference. Unlike traditional macro-level ratios, this measure offers a more principled and less confounded way to characterize modality bias, disentangling it from unimodal capabilities and dataset artifacts. Further, by probing layer-wise predictions, we reveal the internal mechanism of oscillation: in ambiguous regions near the balance point, models vacillate between modalities across layers, explaining externally observed indecision. Together, these findings establish relative uncertainty and inherent preference as the two governing principles of modality following, offering both a quantitative framework and mechanistic insight into how MLLMs resolve conflicting information.

  • 7 authors
·
Nov 3, 2025 1

UniFork: Exploring Modality Alignment for Unified Multimodal Understanding and Generation

Unified image understanding and generation has emerged as a promising paradigm in multimodal artificial intelligence. Despite recent progress, the optimal architectural design for such unified models remains an open challenge. In this work, we start by analyzing the modality alignment behaviors of task-specific expert models for understanding and generation, as well as current unified models. Our analysis reveals a crucial observation: understanding tasks benefit from a progressively increasing modality alignment across network depth, which helps build up semantic information for better comprehension; In contrast, generation tasks follow a different trend: modality alignment increases in the early layers but decreases in the deep layers to recover spatial details. These divergent alignment patterns create a fundamental conflict in fully shared Transformer backbones, where a uniform representational flow often leads to performance compromises across two tasks. Motivated by this finding, we introduce UniFork, a novel Y-shaped architecture that shares the shallow layers for cross-task representation learning, while employing task-specific branches in deeper layers to avoid task interference. This design effectively balances shared learning and task specialization. Through extensive ablation experiments, we demonstrate that Unifork consistently outperforms conventional fully shared Transformer architectures, and achieves performance on par with or better than task-specific models.

  • 8 authors
·
Jun 20, 2025 2

Scaling Multimodal Pre-Training via Cross-Modality Gradient Harmonization

Self-supervised pre-training recently demonstrates success on large-scale multimodal data, and state-of-the-art contrastive learning methods often enforce the feature consistency from cross-modality inputs, such as video/audio or video/text pairs. Despite its convenience to formulate and leverage in practice, such cross-modality alignment (CMA) is only a weak and noisy supervision, since two modalities can be semantically misaligned even they are temporally aligned. For example, even in the commonly adopted instructional videos, a speaker can sometimes refer to something that is not visually present in the current frame; and the semantic misalignment would only be more unpredictable for the raw videos from the internet. We conjecture that might cause conflicts and biases among modalities, and may hence prohibit CMA from scaling up to training with larger and more heterogeneous data. This paper first verifies our conjecture by observing that, even in the latest VATT pre-training using only instructional videos, there exist strong gradient conflicts between different CMA losses within the same video, audio, text triplet, indicating them as the noisy source of supervision. We then propose to harmonize such gradients, via two techniques: (i) cross-modality gradient realignment: modifying different CMA loss gradients for each sample triplet, so that their gradient directions are more aligned; and (ii) gradient-based curriculum learning: leveraging the gradient conflict information on an indicator of sample noisiness, to develop a curriculum learning strategy to prioritize training on less noisy sample triplets. Applying those techniques to pre-training VATT on the HowTo100M dataset, we consistently improve its performance on different downstream tasks. Moreover, we are able to scale VATT pre-training to more complicated non-narrative Youtube8M dataset to further improve the state-of-the-arts.

  • 6 authors
·
Nov 3, 2022

Beyond Modality Collapse: Representations Blending for Multimodal Dataset Distillation

Multimodal Dataset Distillation (MDD) seeks to condense large-scale image-text datasets into compact surrogates while retaining their effectiveness for cross-modal learning. Despite recent progress, existing MDD approaches often suffer from \textbf{Modality Collapse}, characterized by over-concentrated intra-modal representations and enlarged distributional gap across modalities. In this paper, at the first time, we identify this issue as stemming from a fundamental conflict between the over-compression behavior inherent in dataset distillation and the cross-modal supervision imposed by contrastive objectives. To alleviate modality collapse, we introduce RepBlend, a novel MDD framework that weakens overdominant cross-modal supervision via representation blending, thereby significantly enhancing intra-modal diversity. Additionally, we observe that current MDD methods impose asymmetric supervision across modalities, resulting in biased optimization. To address this, we propose symmetric projection trajectory matching, which synchronizes the optimization dynamics using modality-specific projection heads, thereby promoting balanced supervision and enhancing cross-modal alignment. Experiments on Flickr-30K and MS-COCO show that RepBlend consistently outperforms prior state-of-the-art MDD methods, achieving significant gains in retrieval performance (e.g., +9.4 IR@10, +6.3 TR@10 under the 100-pair setting) and offering up to 6.7times distillation speedup.

  • 5 authors
·
May 15, 2025

FULLER: Unified Multi-modality Multi-task 3D Perception via Multi-level Gradient Calibration

Multi-modality fusion and multi-task learning are becoming trendy in 3D autonomous driving scenario, considering robust prediction and computation budget. However, naively extending the existing framework to the domain of multi-modality multi-task learning remains ineffective and even poisonous due to the notorious modality bias and task conflict. Previous works manually coordinate the learning framework with empirical knowledge, which may lead to sub-optima. To mitigate the issue, we propose a novel yet simple multi-level gradient calibration learning framework across tasks and modalities during optimization. Specifically, the gradients, produced by the task heads and used to update the shared backbone, will be calibrated at the backbone's last layer to alleviate the task conflict. Before the calibrated gradients are further propagated to the modality branches of the backbone, their magnitudes will be calibrated again to the same level, ensuring the downstream tasks pay balanced attention to different modalities. Experiments on large-scale benchmark nuScenes demonstrate the effectiveness of the proposed method, eg, an absolute 14.4% mIoU improvement on map segmentation and 1.4% mAP improvement on 3D detection, advancing the application of 3D autonomous driving in the domain of multi-modality fusion and multi-task learning. We also discuss the links between modalities and tasks.

  • 8 authors
·
Jul 31, 2023

Can Large Multimodal Models Actively Recognize Faulty Inputs? A Systematic Evaluation Framework of Their Input Scrutiny Ability

Large Multimodal Models (LMMs) have witnessed remarkable growth, showcasing formidable capabilities in handling intricate multimodal tasks with exceptional performance. Recent research has underscored the inclination of large language models to passively accept defective inputs, often resulting in futile reasoning on invalid prompts. However, the same critical question of whether LMMs can actively detect and scrutinize erroneous inputs still remains unexplored. To address this gap, we introduce the Input Scrutiny Ability Evaluation Framework (ISEval), which encompasses seven categories of flawed premises and three evaluation metrics. Our extensive evaluation of ten advanced LMMs has identified key findings. Most models struggle to actively detect flawed textual premises without guidance, which reflects a strong reliance on explicit prompts for premise error identification. Error type affects performance: models excel at identifying logical fallacies but struggle with surface-level linguistic errors and certain conditional flaws. Modality trust varies-Gemini 2.5 pro and Claude Sonnet 4 balance visual and textual info, while aya-vision-8b over-rely on text in conflicts. These insights underscore the urgent need to enhance LMMs' proactive verification of input validity and shed novel insights into mitigating the problem. The code is available at https://github.com/MLGroupJLU/LMM_ISEval.

  • 5 authors
·
Aug 5, 2025 2

Alternating Gradient Descent and Mixture-of-Experts for Integrated Multimodal Perception

We present Integrated Multimodal Perception (IMP), a simple and scalable multimodal multi-task training and modeling approach. IMP integrates multimodal inputs including image, video, text, and audio into a single Transformer encoder with minimal modality-specific components. IMP makes use of a novel design that combines Alternating Gradient Descent (AGD) and Mixture-of-Experts (MoE) for efficient model \& task scaling. We conduct extensive empirical studies about IMP and reveal the following key insights: 1) performing gradient descent updates by alternating on diverse heterogeneous modalities, loss functions, and tasks, while also varying input resolutions, efficiently improves multimodal understanding. 2) model sparsification with MoE on a single modality-agnostic encoder substantially improves the performance, outperforming dense models that use modality-specific encoders or additional fusion layers and greatly mitigating the conflicts between modalities. IMP achieves competitive performance on a wide range of downstream tasks including image classification, video classification, image-text, and video-text retrieval. Most notably, we train a sparse IMP-MoE-L focusing on video tasks that achieves new state-of-the-art in zero-shot video classification. Our model achieves 77.0% on Kinetics-400, 76.8% on Kinetics-600, and 76.8% on Kinetics-700 zero-shot classification accuracy, improving the previous state-of-the-art by +5%, +6.7%, and +5.8%, respectively, while using only 15% of their total training computational cost.

  • 6 authors
·
May 10, 2023

Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models

Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting inconsistencies confined to a single modality, particularly in text, but struggle with cross-modal conflicts and complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.

  • 8 authors
·
Feb 21, 2025 2

TAT: Task-Adaptive Transformer for All-in-One Medical Image Restoration

Medical image restoration (MedIR) aims to recover high-quality medical images from their low-quality counterparts. Recent advancements in MedIR have focused on All-in-One models capable of simultaneously addressing multiple different MedIR tasks. However, due to significant differences in both modality and degradation types, using a shared model for these diverse tasks requires careful consideration of two critical inter-task relationships: task interference, which occurs when conflicting gradient update directions arise across tasks on the same parameter, and task imbalance, which refers to uneven optimization caused by varying learning difficulties inherent to each task. To address these challenges, we propose a task-adaptive Transformer (TAT), a novel framework that dynamically adapts to different tasks through two key innovations. First, a task-adaptive weight generation strategy is introduced to mitigate task interference by generating task-specific weight parameters for each task, thereby eliminating potential gradient conflicts on shared weight parameters. Second, a task-adaptive loss balancing strategy is introduced to dynamically adjust loss weights based on task-specific learning difficulties, preventing task domination or undertraining. Extensive experiments demonstrate that our proposed TAT achieves state-of-the-art performance in three MedIR tasks--PET synthesis, CT denoising, and MRI super-resolution--both in task-specific and All-in-One settings. Code is available at https://github.com/Yaziwel/TAT.

  • 6 authors
·
Dec 16, 2025 1

DLF: Disentangled-Language-Focused Multimodal Sentiment Analysis

Multimodal Sentiment Analysis (MSA) leverages heterogeneous modalities, such as language, vision, and audio, to enhance the understanding of human sentiment. While existing models often focus on extracting shared information across modalities or directly fusing heterogeneous modalities, such approaches can introduce redundancy and conflicts due to equal treatment of all modalities and the mutual transfer of information between modality pairs. To address these issues, we propose a Disentangled-Language-Focused (DLF) multimodal representation learning framework, which incorporates a feature disentanglement module to separate modality-shared and modality-specific information. To further reduce redundancy and enhance language-targeted features, four geometric measures are introduced to refine the disentanglement process. A Language-Focused Attractor (LFA) is further developed to strengthen language representation by leveraging complementary modality-specific information through a language-guided cross-attention mechanism. The framework also employs hierarchical predictions to improve overall accuracy. Extensive experiments on two popular MSA datasets, CMU-MOSI and CMU-MOSEI, demonstrate the significant performance gains achieved by the proposed DLF framework. Comprehensive ablation studies further validate the effectiveness of the feature disentanglement module, language-focused attractor, and hierarchical predictions. Our code is available at https://github.com/pwang322/DLF.

  • 5 authors
·
Dec 16, 2024