- Modular Quantization-Aware Training: Increasing Accuracy by Decreasing Precision in 6D Object Pose Estimation Edge applications, such as collaborative robotics and spacecraft rendezvous, demand efficient 6D object pose estimation on resource-constrained embedded platforms. Existing 6D pose estimation networks are often too large for such deployments, necessitating compression while maintaining reliable performance. To address this challenge, we introduce Modular Quantization-Aware Training (MQAT), an adaptive and mixed-precision quantization-aware training strategy that exploits the modular structure of modern 6D pose estimation architectures. MQAT guides a systematic gradated modular quantization sequence and determines module-specific bit precisions, leading to quantized models that outperform those produced by state-of-the-art uniform and mixed-precision quantization techniques. Our experiments showcase the generality of MQAT across datasets, architectures, and quantization algorithms. Remarkably, MQAT-trained quantized models achieve a significant accuracy boost (>7%) over the baseline full-precision network while reducing model size by a factor of 4x or more. 5 authors · Mar 12, 2023
- R2Q: Towards Robust 2-Bit Large Language Models via Residual Refinement Quantization The rapid progress of Large Language Models (LLMs) has brought substantial computational and memory demands, spurring the adoption of low-bit quantization. While 8-bit and 4-bit formats have become prevalent, extending quantization to 2 bits remains challenging due to severe accuracy degradation. To address this, we propose Residual Refinement Quantization (R2Q)-a novel 2-bit quantization framework that decomposes the process into two sequential 1-bit sub-quantizations, forming an adaptive quantization lattice. Extensive evaluations on Llama, OPT, and Qwen across diverse benchmarks-covering question answering, commonsense reasoning, and language modeling-demonstrate that R2Q consistently outperforms existing 2-bit quantization methods in both fine-grained and coarse-grained settings. By refining quantization through a residual learning mechanism, R2Q enhances performance, improves training stability, and accelerates convergence under extreme compression. Furthermore, its modular design enables seamless integration with existing quantization-aware training (QAT) frameworks. 4 authors · Nov 21, 2025
1 Bullion: A Column Store for Machine Learning The past two decades have witnessed significant success in applying columnar storage to data warehousing and analytics. However, the rapid growth of machine learning poses new challenges. This paper presents Bullion, a columnar storage system tailored for machine learning workloads. Bullion addresses the complexities of data compliance, optimizes the encoding of long sequence sparse features, efficiently manages wide-table projections, introduces feature quantization in storage, enables quality-aware sequential reads for multimodal training data, and provides a comprehensive cascading encoding framework that unifies diverse encoding schemes through modular, composable interfaces. By aligning with the evolving requirements of ML applications, Bullion facilitates the application of columnar storage and processing to modern application scenarios such as those within advertising, recommendation systems, and Generative AI. Preliminary experimental results and theoretical analysis demonstrate Bullion's improved ability to deliver strong performance in the face of the unique demands of machine learning workloads compared to existing columnar storage solutions. Bullion significantly reduces I/O costs for deletion compliance, achieves substantial storage savings with its optimized encoding scheme for sparse features, and improves metadata parsing speed for wide-table projections. These advancements enable Bullion to become an important component in the future of machine learning infrastructure, enabling organizations to efficiently manage and process the massive volumes of data required for training and inference in modern AI applications. 4 authors · Apr 13, 2024