- Can We Achieve Efficient Diffusion without Self-Attention? Distilling Self-Attention into Convolutions Contemporary diffusion models built upon U-Net or Diffusion Transformer (DiT) architectures have revolutionized image generation through transformer-based attention mechanisms. The prevailing paradigm has commonly employed self-attention with quadratic computational complexity to handle global spatial relationships in complex images, thereby synthesizing high-fidelity images with coherent visual semantics.Contrary to conventional wisdom, our systematic layer-wise analysis reveals an interesting discrepancy: self-attention in pre-trained diffusion models predominantly exhibits localized attention patterns, closely resembling convolutional inductive biases. This suggests that global interactions in self-attention may be less critical than commonly assumed.Driven by this, we propose \(\Delta\)ConvFusion to replace conventional self-attention modules with Pyramid Convolution Blocks (\(\Delta\)ConvBlocks).By distilling attention patterns into localized convolutional operations while keeping other components frozen, \(\Delta\)ConvFusion achieves performance comparable to transformer-based counterparts while reducing computational cost by 6929times and surpassing LinFusion by 5.42times in efficiency--all without compromising generative fidelity. 6 authors · Apr 29
- MM-Pyramid: Multimodal Pyramid Attentional Network for Audio-Visual Event Localization and Video Parsing Recognizing and localizing events in videos is a fundamental task for video understanding. Since events may occur in auditory and visual modalities, multimodal detailed perception is essential for complete scene comprehension. Most previous works attempted to analyze videos from a holistic perspective. However, they do not consider semantic information at multiple scales, which makes the model difficult to localize events in different lengths. In this paper, we present a Multimodal Pyramid Attentional Network (MM-Pyramid) for event localization. Specifically, we first propose the attentive feature pyramid module. This module captures temporal pyramid features via several stacking pyramid units, each of them is composed of a fixed-size attention block and dilated convolution block. We also design an adaptive semantic fusion module, which leverages a unit-level attention block and a selective fusion block to integrate pyramid features interactively. Extensive experiments on audio-visual event localization and weakly-supervised audio-visual video parsing tasks verify the effectiveness of our approach. 5 authors · Nov 24, 2021
- Feature Pyramid Encoding Network for Real-time Semantic Segmentation Although current deep learning methods have achieved impressive results for semantic segmentation, they incur high computational costs and have a huge number of parameters. For real-time applications, inference speed and memory usage are two important factors. To address the challenge, we propose a lightweight feature pyramid encoding network (FPENet) to make a good trade-off between accuracy and speed. Specifically, we use a feature pyramid encoding block to encode multi-scale contextual features with depthwise dilated convolutions in all stages of the encoder. A mutual embedding upsample module is introduced in the decoder to aggregate the high-level semantic features and low-level spatial details efficiently. The proposed network outperforms existing real-time methods with fewer parameters and improved inference speed on the Cityscapes and CamVid benchmark datasets. Specifically, FPENet achieves 68.0\% mean IoU on the Cityscapes test set with only 0.4M parameters and 102 FPS speed on an NVIDIA TITAN V GPU. 2 authors · Sep 18, 2019