new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 26

Tomayto, Tomahto. Beyond Token-level Answer Equivalence for Question Answering Evaluation

The predictions of question answering (QA)systems are typically evaluated against manually annotated finite sets of one or more answers. This leads to a coverage limitation that results in underestimating the true performance of systems, and is typically addressed by extending over exact match (EM) with pre-defined rules or with the token-level F1 measure. In this paper, we present the first systematic conceptual and data-driven analysis to examine the shortcomings of token-level equivalence measures. To this end, we define the asymmetric notion of answer equivalence (AE), accepting answers that are equivalent to or improve over the reference, and publish over 23k human judgments for candidates produced by multiple QA systems on SQuAD. Through a careful analysis of this data, we reveal and quantify several concrete limitations of the F1 measure, such as a false impression of graduality, or missing dependence on the question. Since collecting AE annotations for each evaluated model is expensive, we learn a BERT matching (BEM) measure to approximate this task. Being a simpler task than QA, we find BEM to provide significantly better AE approximations than F1, and to more accurately reflect the performance of systems. Finally, we demonstrate the practical utility of AE and BEM on the concrete application of minimal accurate prediction sets, reducing the number of required answers by up to x2.6.

  • 5 authors
·
Feb 15, 2022

MathMist: A Parallel Multilingual Benchmark Dataset for Mathematical Problem Solving and Reasoning

Mathematical reasoning remains one of the most challenging domains for large language models (LLMs), requiring not only linguistic understanding but also structured logical deduction and numerical precision. While recent LLMs demonstrate strong general-purpose reasoning abilities, their mathematical competence across diverse languages remains underexplored. Existing benchmarks primarily focus on English or a narrow subset of high-resource languages, leaving significant gaps in assessing multilingual and cross-lingual mathematical reasoning. To address this, we introduce MathMist, a parallel multilingual benchmark for mathematical problem solving and reasoning. MathMist encompasses over 21K aligned question-answer pairs across seven languages, representing a balanced coverage of high-, medium-, and low-resource linguistic settings. The dataset captures linguistic variety, multiple types of problem settings, and solution synthesizing capabilities. We systematically evaluate a diverse suite of models, including open-source small and medium LLMs, proprietary systems, and multilingual-reasoning-focused models, under zero-shot, chain-of-thought (CoT), and code-switched reasoning paradigms. Our results reveal persistent deficiencies in LLMs' ability to perform consistent and interpretable mathematical reasoning across languages, with pronounced degradation in low-resource settings. All the codes and data are available at GitHub: https://github.com/mahbubhimel/MathMist

  • 5 authors
·
Oct 16

M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization?

We investigate a critical yet under-explored question in Large Vision-Language Models (LVLMs): Do LVLMs genuinely comprehend interleaved image-text in the document? Existing document understanding benchmarks often assess LVLMs using question-answer formats, which are information-sparse and difficult to guarantee the coverage of long-range dependencies. To address this issue, we introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench), which comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences. M-DocSum-Bench is a reference-based generation task and necessitates the generation of interleaved image-text summaries using provided reference images, thereby simultaneously evaluating capabilities in understanding, reasoning, localization, and summarization within complex multimodal document scenarios. To facilitate this benchmark, we develop an automated framework to construct summaries and propose a fine-grained evaluation method called M-DocEval. Moreover, we further develop a robust summarization baseline, i.e., M-DocSum-7B, by progressive two-stage training with diverse instruction and preference data. The extensive results on our M-DocSum-Bench reveal that the leading LVLMs struggle to maintain coherence and accurately integrate information within long and interleaved contexts, often exhibiting confusion between similar images and a lack of robustness. Notably, M-DocSum-7B achieves state-of-the-art performance compared to larger and closed-source models (including GPT-4o, Gemini Pro, Claude-3.5-Sonnet and Qwen2.5-VL-72B, etc.), demonstrating the potential of LVLMs for improved interleaved image-text understanding. The code, data, and models are available at https://github.com/stepfun-ai/M-DocSum-Bench.

  • 8 authors
·
Mar 27

CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering

The task of zero-shot commonsense question answering evaluates models on their capacity to reason about general scenarios beyond those presented in specific datasets. Existing approaches for tackling this task leverage external knowledge from CommonSense Knowledge Bases (CSKBs) by pretraining the model on synthetic QA pairs constructed from CSKBs. In these approaches, negative examples (distractors) are formulated by randomly sampling from CSKBs using fairly primitive keyword constraints. However, two bottlenecks limit these approaches: the inherent incompleteness of CSKBs limits the semantic coverage of synthetic QA pairs, and the lack of human annotations makes the sampled negative examples potentially uninformative and contradictory. To tackle these limitations above, we propose Conceptualization-Augmented Reasoner (CAR), a zero-shot commonsense question-answering framework that fully leverages the power of conceptualization. Specifically, CAR abstracts a commonsense knowledge triple to many higher-level instances, which increases the coverage of CSKB and expands the ground-truth answer space, reducing the likelihood of selecting false-negative distractors. Extensive experiments demonstrate that CAR more robustly generalizes to answering questions about zero-shot commonsense scenarios than existing methods, including large language models, such as GPT3.5 and ChatGPT. Our codes, data, and model checkpoints are available at https://github.com/HKUST-KnowComp/CAR.

  • 7 authors
·
May 24, 2023

Learning to Mine Aligned Code and Natural Language Pairs from Stack Overflow

For tasks like code synthesis from natural language, code retrieval, and code summarization, data-driven models have shown great promise. However, creating these models require parallel data between natural language (NL) and code with fine-grained alignments. Stack Overflow (SO) is a promising source to create such a data set: the questions are diverse and most of them have corresponding answers with high-quality code snippets. However, existing heuristic methods (e.g., pairing the title of a post with the code in the accepted answer) are limited both in their coverage and the correctness of the NL-code pairs obtained. In this paper, we propose a novel method to mine high-quality aligned data from SO using two sets of features: hand-crafted features considering the structure of the extracted snippets, and correspondence features obtained by training a probabilistic model to capture the correlation between NL and code using neural networks. These features are fed into a classifier that determines the quality of mined NL-code pairs. Experiments using Python and Java as test beds show that the proposed method greatly expands coverage and accuracy over existing mining methods, even when using only a small number of labeled examples. Further, we find that reasonable results are achieved even when training the classifier on one language and testing on another, showing promise for scaling NL-code mining to a wide variety of programming languages beyond those for which we are able to annotate data.

  • 5 authors
·
May 22, 2018