- Efficient Gradient Tracking Algorithms for Distributed Optimization Problems with Inexact Communication Distributed optimization problems usually face inexact communication issues induced by communication quantization, differential privacy protection, or channels noise. Most existing algorithms need two-timescale setting of the stepsize of gradient descent and the parameter of noise suppression to ensure the convergence to the optimal solution. In this paper, we propose two single-timescale algorithms, VRA-DGT and VRA--DSGT, for distributed deterministic and stochastic optimization problems with inexact communication respectively. VRA-DGT integrates the Variance-Reduced Aggregation (VRA) mechanism with the distributed gradient tracking framework, which achieves a convergence rate of Oleft(k^{-1}right) in the mean-square sense when the objective function is strongly convex and smooth. For distributed stochastic optimization problem,VRA-DSGT, where a hybrid variance reduction technique has been introduced in VRA-DGT, VRA-DGT,, maintains the convergence rate of Oleft(k^{-1}right) for strongly convex and smooth objective function. Simulated experiments on logistic regression problem with real-world data verify the effectiveness of the proposed algorithms. 2 authors · Jan 10
- Distributed Maximum Consensus over Noisy Links We introduce a distributed algorithm, termed noise-robust distributed maximum consensus (RD-MC), for estimating the maximum value within a multi-agent network in the presence of noisy communication links. Our approach entails redefining the maximum consensus problem as a distributed optimization problem, allowing a solution using the alternating direction method of multipliers. Unlike existing algorithms that rely on multiple sets of noise-corrupted estimates, RD-MC employs a single set, enhancing both robustness and efficiency. To further mitigate the effects of link noise and improve robustness, we apply moving averaging to the local estimates. Through extensive simulations, we demonstrate that RD-MC is significantly more robust to communication link noise compared to existing maximum-consensus algorithms. 4 authors · Mar 27, 2024
- Noise-Robust and Resource-Efficient ADMM-based Federated Learning Federated learning (FL) leverages client-server communications to train global models on decentralized data. However, communication noise or errors can impair model accuracy. To address this problem, we propose a novel FL algorithm that enhances robustness against communication noise while also reducing communication load. We derive the proposed algorithm through solving the weighted least-squares (WLS) regression problem as an illustrative example. We first frame WLS regression as a distributed convex optimization problem over a federated network employing random scheduling for improved communication efficiency. We then apply the alternating direction method of multipliers (ADMM) to iteratively solve this problem. To counteract the detrimental effects of cumulative communication noise, we introduce a key modification by eliminating the dual variable and implementing a new local model update at each participating client. This subtle yet effective change results in using a single noisy global model update at each client instead of two, improving robustness against additive communication noise. Furthermore, we incorporate another modification enabling clients to continue local updates even when not selected by the server, leading to substantial performance improvements. Our theoretical analysis confirms the convergence of our algorithm in both mean and the mean-square senses, even when the server communicates with a random subset of clients over noisy links at each iteration. Numerical results validate the effectiveness of our proposed algorithm and corroborate our theoretical findings. 4 authors · Sep 20, 2024
- EControl: Fast Distributed Optimization with Compression and Error Control Modern distributed training relies heavily on communication compression to reduce the communication overhead. In this work, we study algorithms employing a popular class of contractive compressors in order to reduce communication overhead. However, the naive implementation often leads to unstable convergence or even exponential divergence due to the compression bias. Error Compensation (EC) is an extremely popular mechanism to mitigate the aforementioned issues during the training of models enhanced by contractive compression operators. Compared to the effectiveness of EC in the data homogeneous regime, the understanding of the practicality and theoretical foundations of EC in the data heterogeneous regime is limited. Existing convergence analyses typically rely on strong assumptions such as bounded gradients, bounded data heterogeneity, or large batch accesses, which are often infeasible in modern machine learning applications. We resolve the majority of current issues by proposing EControl, a novel mechanism that can regulate error compensation by controlling the strength of the feedback signal. We prove fast convergence for EControl in standard strongly convex, general convex, and nonconvex settings without any additional assumptions on the problem or data heterogeneity. We conduct extensive numerical evaluations to illustrate the efficacy of our method and support our theoretical findings. 3 authors · Nov 6, 2023
- The Power of First-Order Smooth Optimization for Black-Box Non-Smooth Problems Gradient-free/zeroth-order methods for black-box convex optimization have been extensively studied in the last decade with the main focus on oracle calls complexity. In this paper, besides the oracle complexity, we focus also on iteration complexity, and propose a generic approach that, based on optimal first-order methods, allows to obtain in a black-box fashion new zeroth-order algorithms for non-smooth convex optimization problems. Our approach not only leads to optimal oracle complexity, but also allows to obtain iteration complexity similar to first-order methods, which, in turn, allows to exploit parallel computations to accelerate the convergence of our algorithms. We also elaborate on extensions for stochastic optimization problems, saddle-point problems, and distributed optimization. 9 authors · Jan 28, 2022
- Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks? We consider decentralized optimization problems where one aims to minimize a sum of convex smooth objective functions distributed between nodes in the network. The links in the network can change from time to time. For the setting when the amount of changes is arbitrary, lower complexity bounds and corresponding optimal algorithms are known, and the consensus acceleration is not possible. However, in practice the magnitude of network changes may be limited. We derive lower communication complexity bounds for several regimes of velocity of networks changes. Moreover, we show how to obtain accelerated communication rates for a certain class of time-varying graphs using a specific consensus algorithm. 4 authors · Jan 27, 2023
- Distributed Contextual Linear Bandits with Minimax Optimal Communication Cost We study distributed contextual linear bandits with stochastic contexts, where N agents act cooperatively to solve a linear bandit-optimization problem with d-dimensional features over the course of T rounds. For this problem, we derive the first ever information-theoretic lower bound Omega(dN) on the communication cost of any algorithm that performs optimally in a regret minimization setup. We then propose a distributed batch elimination version of the LinUCB algorithm, DisBE-LUCB, where the agents share information among each other through a central server. We prove that the communication cost of DisBE-LUCB matches our lower bound up to logarithmic factors. In particular, for scenarios with known context distribution, the communication cost of DisBE-LUCB is only mathcal{O}(dN) and its regret is {mathcal{O}}(dNT), which is of the same order as that incurred by an optimal single-agent algorithm for NT rounds. We also provide similar bounds for practical settings where the context distribution can only be estimated. Therefore, our proposed algorithm is nearly minimax optimal in terms of both regret and communication cost. Finally, we propose DecBE-LUCB, a fully decentralized version of DisBE-LUCB, which operates without a central server, where agents share information with their immediate neighbors through a carefully designed consensus procedure. 4 authors · May 26, 2022
3 Distributed Swarm Intelligence This paper presents the development of a distributed application that facilitates the understanding and application of swarm intelligence in solving optimization problems. The platform comprises a search space of customizable random particles, allowing users to tailor the solution to their specific needs. By leveraging the power of Ray distributed computing, the application can support multiple users simultaneously, offering a flexible and scalable solution. The primary objective of this project is to provide a user-friendly platform that enhances the understanding and practical use of swarm intelligence in problem-solving. 2 authors · Jan 30, 2023
- Distributed Stochastic Gradient Descent: Nonconvexity, Nonsmoothness, and Convergence to Local Minima In centralized settings, it is well known that stochastic gradient descent (SGD) avoids saddle points and converges to local minima in nonconvex problems. However, similar guarantees are lacking for distributed first-order algorithms. The paper studies distributed stochastic gradient descent (D-SGD)--a simple network-based implementation of SGD. Conditions under which D-SGD avoids saddle points and converges to local minima are studied. First, we consider the problem of computing critical points. Assuming loss functions are nonconvex and possibly nonsmooth, it is shown that, for each fixed initialization, D-SGD converges to critical points of the loss with probability one. Next, we consider the problem of avoiding saddle points. In this case, we again assume that loss functions may be nonconvex and nonsmooth, but are smooth in a neighborhood of a saddle point. It is shown that, for any fixed initialization, D-SGD avoids such saddle points with probability one. Results are proved by studying the underlying (distributed) gradient flow, using the ordinary differential equation (ODE) method of stochastic approximation, and extending classical techniques from dynamical systems theory such as stable manifolds. Results are proved in the general context of subspace-constrained optimization, of which D-SGD is a special case. 4 authors · Mar 5, 2020
1 Sparsity-Aware Distributed Learning for Gaussian Processes with Linear Multiple Kernel Gaussian processes (GPs) stand as crucial tools in machine learning and signal processing, with their effectiveness hinging on kernel design and hyper-parameter optimization. This paper presents a novel GP linear multiple kernel (LMK) and a generic sparsity-aware distributed learning framework to optimize the hyper-parameters. The newly proposed grid spectral mixture product (GSMP) kernel is tailored for multi-dimensional data, effectively reducing the number of hyper-parameters while maintaining good approximation capability. We further demonstrate that the associated hyper-parameter optimization of this kernel yields sparse solutions. To exploit the inherent sparsity of the solutions, we introduce the Sparse LInear Multiple Kernel Learning (SLIM-KL) framework. The framework incorporates a quantized alternating direction method of multipliers (ADMM) scheme for collaborative learning among multiple agents, where the local optimization problem is solved using a distributed successive convex approximation (DSCA) algorithm. SLIM-KL effectively manages large-scale hyper-parameter optimization for the proposed kernel, simultaneously ensuring data privacy and minimizing communication costs. Theoretical analysis establishes convergence guarantees for the learning framework, while experiments on diverse datasets demonstrate the superior prediction performance and efficiency of our proposed methods. 5 authors · Sep 15, 2023
- Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates Distributed and federated learning algorithms and techniques associated primarily with minimization problems. However, with the increase of minimax optimization and variational inequality problems in machine learning, the necessity of designing efficient distributed/federated learning approaches for these problems is becoming more apparent. In this paper, we provide a unified convergence analysis of communication-efficient local training methods for distributed variational inequality problems (VIPs). Our approach is based on a general key assumption on the stochastic estimates that allows us to propose and analyze several novel local training algorithms under a single framework for solving a class of structured non-monotone VIPs. We present the first local gradient descent-accent algorithms with provable improved communication complexity for solving distributed variational inequalities on heterogeneous data. The general algorithmic framework recovers state-of-the-art algorithms and their sharp convergence guarantees when the setting is specialized to minimization or minimax optimization problems. Finally, we demonstrate the strong performance of the proposed algorithms compared to state-of-the-art methods when solving federated minimax optimization problems. 4 authors · Jun 8, 2023
- Decentralized Riemannian Conjugate Gradient Method on the Stiefel Manifold The conjugate gradient method is a crucial first-order optimization method that generally converges faster than the steepest descent method, and its computational cost is much lower than that of second-order methods. However, while various types of conjugate gradient methods have been studied in Euclidean spaces and on Riemannian manifolds, there is little study for those in distributed scenarios. This paper proposes a decentralized Riemannian conjugate gradient descent (DRCGD) method that aims at minimizing a global function over the Stiefel manifold. The optimization problem is distributed among a network of agents, where each agent is associated with a local function, and the communication between agents occurs over an undirected connected graph. Since the Stiefel manifold is a non-convex set, a global function is represented as a finite sum of possibly non-convex (but smooth) local functions. The proposed method is free from expensive Riemannian geometric operations such as retractions, exponential maps, and vector transports, thereby reducing the computational complexity required by each agent. To the best of our knowledge, DRCGD is the first decentralized Riemannian conjugate gradient algorithm to achieve global convergence over the Stiefel manifold. 7 authors · Aug 21, 2023
- Comparative Analysis of Ant Colony Optimization and Google OR-Tools for Solving the Open Capacitated Vehicle Routing Problem in Logistics In modern logistics management systems, route planning requires high efficiency. The Open Capacitated Vehicle Routing Problem (OCVRP) deals with finding optimal delivery routes for a fleet of vehicles serving geographically distributed customers, without requiring the vehicles to return to the depot after deliveries. The present study is comparative in nature and speaks of two algorithms for OCVRP solution: Ant Colony Optimization (ACO), a nature-inspired metaheuristic; and Google OR-Tools, an industry-standard toolkit for optimization. Both implementations were developed in Python and using a custom dataset. Performance appraisal was based on routing efficiency, computation time, and scalability. The results show that ACO allows flexibility in routing parameters while OR-Tools runs much faster with more consistency and requires less input. This could help choose among routing strategies for scalable real-time logistics systems. 4 authors · Sep 30
- Multiobjective Optimization of Non-Smooth PDE-Constrained Problems Multiobjective optimization plays an increasingly important role in modern applications, where several criteria are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. The advances in algorithms and the increasing interest in Pareto-optimal solutions have led to a wide range of new applications related to optimal and feedback control - potentially with non-smoothness both on the level of the objectives or in the system dynamics. This results in new challenges such as dealing with expensive models (e.g., governed by partial differential equations (PDEs)) and developing dedicated algorithms handling the non-smoothness. Since in contrast to single-objective optimization, the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging, which is particularly problematic when the objectives are costly to evaluate or when a solution has to be presented very quickly. This article gives an overview of recent developments in the field of multiobjective optimization of non-smooth PDE-constrained problems. In particular we report on the advances achieved within Project 2 "Multiobjective Optimization of Non-Smooth PDE-Constrained Problems - Switches, State Constraints and Model Order Reduction" of the DFG Priority Programm 1962 "Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization". 7 authors · Aug 2, 2023
- DIFF2: Differential Private Optimization via Gradient Differences for Nonconvex Distributed Learning Differential private optimization for nonconvex smooth objective is considered. In the previous work, the best known utility bound is widetilde O(d/(nvarepsilon_DP)) in terms of the squared full gradient norm, which is achieved by Differential Private Gradient Descent (DP-GD) as an instance, where n is the sample size, d is the problem dimensionality and varepsilon_DP is the differential privacy parameter. To improve the best known utility bound, we propose a new differential private optimization framework called DIFF2 (DIFFerential private optimization via gradient DIFFerences) that constructs a differential private global gradient estimator with possibly quite small variance based on communicated gradient differences rather than gradients themselves. It is shown that DIFF2 with a gradient descent subroutine achieves the utility of widetilde O(d^{2/3}/(nvarepsilon_DP)^{4/3}), which can be significantly better than the previous one in terms of the dependence on the sample size n. To the best of our knowledge, this is the first fundamental result to improve the standard utility widetilde O(d/(nvarepsilon_DP)) for nonconvex objectives. Additionally, a more computational and communication efficient subroutine is combined with DIFF2 and its theoretical analysis is also given. Numerical experiments are conducted to validate the superiority of DIFF2 framework. 2 authors · Feb 8, 2023
51 DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation. Tencent · Nov 9 5
- Decentralised Traffic Incident Detection via Network Lasso Traffic incident detection plays a key role in intelligent transportation systems, which has gained great attention in transport engineering. In the past, traditional machine learning (ML) based detection methods achieved good performance under a centralised computing paradigm, where all data are transmitted to a central server for building ML models therein. Nowadays, deep neural networks based federated learning (FL) has become a mainstream detection approach to enable the model training in a decentralised manner while warranting local data governance. Such neural networks-centred techniques, however, have overshadowed the utility of well-established ML-based detection methods. In this work, we aim to explore the potential of potent conventional ML-based detection models in modern traffic scenarios featured by distributed data. We leverage an elegant but less explored distributed optimisation framework named Network Lasso, with guaranteed global convergence for convex problem formulations, integrate the potent convex ML model with it, and compare it with centralised learning, local learning, and federated learning methods atop a well-known traffic incident detection dataset. Experimental results show that the proposed network lasso-based approach provides a promising alternative to the FL-based approach in data-decentralised traffic scenarios, with a strong convergence guarantee while rekindling the significance of conventional ML-based detection methods. 5 authors · Feb 28, 2024
- Efficient Parallelization Layouts for Large-Scale Distributed Model Training Efficiently training large language models requires parallelizing across hundreds of hardware accelerators and invoking various compute and memory optimizations. When combined, many of these strategies have complex interactions regarding the final training efficiency. Prior work tackling this problem did not have access to the latest set of optimizations, such as FlashAttention or sequence parallelism. In this work, we conduct a comprehensive ablation study of possible training configurations for large language models. We distill this large study into several key recommendations for the most efficient training. For instance, we find that using a micro-batch size of 1 usually enables the most efficient training layouts. Larger micro-batch sizes necessitate activation checkpointing or higher degrees of model parallelism and also lead to larger pipeline bubbles. Our most efficient configurations enable us to achieve state-of-the-art training efficiency results over a range of model sizes, most notably a Model FLOPs utilization of 70.5% when training a Llama 13B model. 5 authors · Nov 9, 2023
1 Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees Variational inequalities in general and saddle point problems in particular are increasingly relevant in machine learning applications, including adversarial learning, GANs, transport and robust optimization. With increasing data and problem sizes necessary to train high performing models across various applications, we need to rely on parallel and distributed computing. However, in distributed training, communication among the compute nodes is a key bottleneck during training, and this problem is exacerbated for high dimensional and over-parameterized models. Due to these considerations, it is important to equip existing methods with strategies that would allow to reduce the volume of transmitted information during training while obtaining a model of comparable quality. In this paper, we present the first theoretically grounded distributed methods for solving variational inequalities and saddle point problems using compressed communication: MASHA1 and MASHA2. Our theory and methods allow for the use of both unbiased (such as Randk; MASHA1) and contractive (such as Topk; MASHA2) compressors. New algorithms support bidirectional compressions, and also can be modified for stochastic setting with batches and for federated learning with partial participation of clients. We empirically validated our conclusions using two experimental setups: a standard bilinear min-max problem, and large-scale distributed adversarial training of transformers. 5 authors · Oct 7, 2021