new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework

Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains. Math Word Problems (MWPs) serve as a crucial benchmark for evaluating LLMs' reasoning abilities. While most research primarily focuses on improving accuracy, it often neglects understanding and addressing the underlying patterns of errors. Current error classification methods rely on static and predefined categories, which limit their ability to capture the full spectrum of error patterns in mathematical reasoning. To enable systematic error analysis, we collect error samples from 15 different LLMs of varying sizes across four distinct MWP datasets using multiple sampling strategies. Based on this extensive collection, we introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples that cover diverse error patterns and reasoning paths. To reduce human bias and enable fine-grained analysis of error patterns, we propose a novel framework for automated dynamic error classification in mathematical reasoning. Experimental results demonstrate that dataset characteristics significantly shape error patterns, which evolve from basic to complex manifestations as model capabilities increase. With deeper insights into error patterns, we propose error-aware prompting that incorporates common error patterns as explicit guidance, leading to significant improvements in mathematical reasoning performance.

  • 5 authors
·
Jan 26

An Embedding-Dynamic Approach to Self-supervised Learning

A number of recent self-supervised learning methods have shown impressive performance on image classification and other tasks. A somewhat bewildering variety of techniques have been used, not always with a clear understanding of the reasons for their benefits, especially when used in combination. Here we treat the embeddings of images as point particles and consider model optimization as a dynamic process on this system of particles. Our dynamic model combines an attractive force for similar images, a locally dispersive force to avoid local collapse, and a global dispersive force to achieve a globally-homogeneous distribution of particles. The dynamic perspective highlights the advantage of using a delayed-parameter image embedding (a la BYOL) together with multiple views of the same image. It also uses a purely-dynamic local dispersive force (Brownian motion) that shows improved performance over other methods and does not require knowledge of other particle coordinates. The method is called MSBReg which stands for (i) a Multiview centroid loss, which applies an attractive force to pull different image view embeddings toward their centroid, (ii) a Singular value loss, which pushes the particle system toward spatially homogeneous density, (iii) a Brownian diffusive loss. We evaluate downstream classification performance of MSBReg on ImageNet as well as transfer learning tasks including fine-grained classification, multi-class object classification, object detection, and instance segmentation. In addition, we also show that applying our regularization term to other methods further improves their performance and stabilize the training by preventing a mode collapse.

  • 5 authors
·
Jul 7, 2022

Dynamic Perceiver for Efficient Visual Recognition

Early exiting has become a promising approach to improving the inference efficiency of deep networks. By structuring models with multiple classifiers (exits), predictions for ``easy'' samples can be generated at earlier exits, negating the need for executing deeper layers. Current multi-exit networks typically implement linear classifiers at intermediate layers, compelling low-level features to encapsulate high-level semantics. This sub-optimal design invariably undermines the performance of later exits. In this paper, we propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task with a novel dual-branch architecture. A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks. Bi-directional cross-attention layers are established to progressively fuse the information of both branches. Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features. Dyn-Perceiver constitutes a versatile and adaptable framework that can be built upon various architectures. Experiments on image classification, action recognition, and object detection demonstrate that our method significantly improves the inference efficiency of different backbones, outperforming numerous competitive approaches across a broad range of computational budgets. Evaluation on both CPU and GPU platforms substantiate the superior practical efficiency of Dyn-Perceiver. Code is available at https://www.github.com/LeapLabTHU/Dynamic_Perceiver.

  • 10 authors
·
Jun 19, 2023

Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks

Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.

  • 78 authors
·
Nov 8, 2024

Dynamic Token Pruning in Plain Vision Transformers for Semantic Segmentation

Vision transformers have achieved leading performance on various visual tasks yet still suffer from high computational complexity. The situation deteriorates in dense prediction tasks like semantic segmentation, as high-resolution inputs and outputs usually imply more tokens involved in computations. Directly removing the less attentive tokens has been discussed for the image classification task but can not be extended to semantic segmentation since a dense prediction is required for every patch. To this end, this work introduces a Dynamic Token Pruning (DToP) method based on the early exit of tokens for semantic segmentation. Motivated by the coarse-to-fine segmentation process by humans, we naturally split the widely adopted auxiliary-loss-based network architecture into several stages, where each auxiliary block grades every token's difficulty level. We can finalize the prediction of easy tokens in advance without completing the entire forward pass. Moreover, we keep k highest confidence tokens for each semantic category to uphold the representative context information. Thus, computational complexity will change with the difficulty of the input, akin to the way humans do segmentation. Experiments suggest that the proposed DToP architecture reduces on average 20% - 35% of computational cost for current semantic segmentation methods based on plain vision transformers without accuracy degradation.

  • 5 authors
·
Aug 2, 2023

From Classification to Optimization: Slicing and Resource Management with TRACTOR

5G and beyond networks promise advancements in bandwidth, latency, and connectivity. The Open Radio Access Network (O-RAN) framework enhances flexibility through network slicing and closed-loop RAN control. Central to this evolution is integrating machine learning (ML) for dynamic network control. This paper presents a framework to optimize O-RAN operation. First, we build and share a robust O-RAN dataset from real-world traffic captured across diverse locations and mobility scenarios, replicated within a full-stack srsRAN-based O-RAN system using the Colosseum RF emulator. This dataset supports ML training and deployment. We then introduce a traffic classification approach leveraging various ML models, demonstrating rapid training, testing, and refinement to improve accuracy. With up to 99% offline accuracy and 92% online accuracy for specific slices, our framework adapts efficiently to different models and network conditions. Finally, we present a physical resource block (PRB) assignment optimization strategy using reinforcement learning to refine resource allocation. Our learned policy achieves a mean performance score (0.631), surpassing a manually configured expert policy (0.609) and a random baseline (0.588), demonstrating improved PRB utilization. More importantly, our approach exhibits lower variability, with the Coefficient of Variation (CV) reduced by up to an order of magnitude in three out of four cases, ensuring more consistent performance. Our contributions, including open-source tools and datasets, accelerate O-RAN and ML-driven network control research.

  • 6 authors
·
Dec 12, 2023

HyMamba: Mamba with Hybrid Geometry-Feature Coupling for Efficient Point Cloud Classification

Point cloud classification is one of the essential technologies for achieving intelligent perception of 3D environments by machines, its core challenge is to efficiently extract local and global features. Mamba leverages state space models (SSMs) for global point cloud modeling. Although prior Mamba-based point cloud processing methods pay attention to the limitation of its flattened sequence modeling mechanism in fusing local and global features, the critical issue of weakened local geometric relevance caused by decoupling geometric structures and features in the input patches remains not fully revealed, and both jointly limit local feature extraction. Therefore, we propose HyMamba, a geometry and feature coupled Mamba framework featuring: (1) Geometry-Feature Coupled Pooling (GFCP), which achieves physically interpretable geometric information coupling by dynamically aggregating adjacent geometric information into local features; (2) Collaborative Feature Enhancer (CoFE), which enhances sparse signal capture through cross-path feature hybridization while effectively integrating global and local contexts. We conducted extensive experiments on ModelNet40 and ScanObjectNN datasets. The results demonstrate that the proposed model achieves superior classification performance, particularly on the ModelNet40, where it elevates accuracy to 95.99% with merely 0.03M additional parameters. Furthermore, it attains 98.9% accuracy on the ModelNetFewShot dataset, validating its robust generalization capabilities under sparse samples. Our code and weights are available at https://github.com/L1277471578/HyMamba

  • 5 authors
·
May 16

Jointly-Learned Exit and Inference for a Dynamic Neural Network : JEI-DNN

Large pretrained models, coupled with fine-tuning, are slowly becoming established as the dominant architecture in machine learning. Even though these models offer impressive performance, their practical application is often limited by the prohibitive amount of resources required for every inference. Early-exiting dynamic neural networks (EDNN) circumvent this issue by allowing a model to make some of its predictions from intermediate layers (i.e., early-exit). Training an EDNN architecture is challenging as it consists of two intertwined components: the gating mechanism (GM) that controls early-exiting decisions and the intermediate inference modules (IMs) that perform inference from intermediate representations. As a result, most existing approaches rely on thresholding confidence metrics for the gating mechanism and strive to improve the underlying backbone network and the inference modules. Although successful, this approach has two fundamental shortcomings: 1) the GMs and the IMs are decoupled during training, leading to a train-test mismatch; and 2) the thresholding gating mechanism introduces a positive bias into the predictive probabilities, making it difficult to readily extract uncertainty information. We propose a novel architecture that connects these two modules. This leads to significant performance improvements on classification datasets and enables better uncertainty characterization capabilities.

  • 3 authors
·
Oct 13, 2023

Nebula: Self-Attention for Dynamic Malware Analysis

Dynamic analysis enables detecting Windows malware by executing programs in a controlled environment and logging their actions. Previous work has proposed training machine learning models, i.e., convolutional and long short-term memory networks, on homogeneous input features like runtime APIs to either detect or classify malware, neglecting other relevant information coming from heterogeneous data like network and file operations. To overcome these issues, we introduce Nebula, a versatile, self-attention Transformer-based neural architecture that generalizes across different behavioral representations and formats, combining diverse information from dynamic log reports. Nebula is composed by several components needed to tokenize, filter, normalize and encode data to feed the transformer architecture. We firstly perform a comprehensive ablation study to evaluate their impact on the performance of the whole system, highlighting which components can be used as-is, and which must be enriched with specific domain knowledge. We perform extensive experiments on both malware detection and classification tasks, using three datasets acquired from different dynamic analyses platforms, show that, on average, Nebula outperforms state-of-the-art models at low false positive rates, with a peak of 12% improvement. Moreover, we showcase how self-supervised learning pre-training matches the performance of fully-supervised models with only 20% of training data, and we inspect the output of Nebula through explainable AI techniques, pinpointing how attention is focusing on specific tokens correlated to malicious activities of malware families. To foster reproducibility, we open-source our findings and models at https://github.com/dtrizna/nebula.

  • 4 authors
·
Sep 19, 2023

DiT: Efficient Vision Transformers with Dynamic Token Routing

Recently, the tokens of images share the same static data flow in many dense networks. However, challenges arise from the variance among the objects in images, such as large variations in the spatial scale and difficulties of recognition for visual entities. In this paper, we propose a data-dependent token routing strategy to elaborate the routing paths of image tokens for Dynamic Vision Transformer, dubbed DiT. The proposed framework generates a data-dependent path per token, adapting to the object scales and visual discrimination of tokens. In feed-forward, the differentiable routing gates are designed to select the scaling paths and feature transformation paths for image tokens, leading to multi-path feature propagation. In this way, the impact of object scales and visual discrimination of image representation can be carefully tuned. Moreover, the computational cost can be further reduced by giving budget constraints to the routing gate and early-stopping of feature extraction. In experiments, our DiT achieves superior performance and favorable complexity/accuracy trade-offs than many SoTA methods on ImageNet classification, object detection, instance segmentation, and semantic segmentation. Particularly, the DiT-B5 obtains 84.8\% top-1 Acc on ImageNet with 10.3 GFLOPs, which is 1.0\% higher than that of the SoTA method with similar computational complexity. These extensive results demonstrate that DiT can serve as versatile backbones for various vision tasks.

  • 3 authors
·
Aug 7, 2023

Trustworthy Long-Tailed Classification

Classification on long-tailed distributed data is a challenging problem, which suffers from serious class-imbalance and accordingly unpromising performance especially on tail classes. Recently, the ensembling based methods achieve the state-of-the-art performance and show great potential. However, there are two limitations for current methods. First, their predictions are not trustworthy for failure-sensitive applications. This is especially harmful for the tail classes where the wrong predictions is basically frequent. Second, they assign unified numbers of experts to all samples, which is redundant for easy samples with excessive computational cost. To address these issues, we propose a Trustworthy Long-tailed Classification (TLC) method to jointly conduct classification and uncertainty estimation to identify hard samples in a multi-expert framework. Our TLC obtains the evidence-based uncertainty (EvU) and evidence for each expert, and then combines these uncertainties and evidences under the Dempster-Shafer Evidence Theory (DST). Moreover, we propose a dynamic expert engagement to reduce the number of engaged experts for easy samples and achieve efficiency while maintaining promising performances. Finally, we conduct comprehensive experiments on the tasks of classification, tail detection, OOD detection and failure prediction. The experimental results show that the proposed TLC outperforms existing methods and is trustworthy with reliable uncertainty.

  • 5 authors
·
Nov 17, 2021

Frequency Dynamic Convolution for Dense Image Prediction

While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.

  • 5 authors
·
Mar 24 2

Signal-Based Malware Classification Using 1D CNNs

Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.

  • 5 authors
·
Sep 8

Dynamic Spectrum Mixer for Visual Recognition

Recently, MLP-based vision backbones have achieved promising performance in several visual recognition tasks. However, the existing MLP-based methods directly aggregate tokens with static weights, leaving the adaptability to different images untouched. Moreover, Recent research demonstrates that MLP-Transformer is great at creating long-range dependencies but ineffective at catching high frequencies that primarily transmit local information, which prevents it from applying to the downstream dense prediction tasks, such as semantic segmentation. To address these challenges, we propose a content-adaptive yet computationally efficient structure, dubbed Dynamic Spectrum Mixer (DSM). The DSM represents token interactions in the frequency domain by employing the Discrete Cosine Transform, which can learn long-term spatial dependencies with log-linear complexity. Furthermore, a dynamic spectrum weight generation layer is proposed as the spectrum bands selector, which could emphasize the informative frequency bands while diminishing others. To this end, the technique can efficiently learn detailed features from visual input that contains both high- and low-frequency information. Extensive experiments show that DSM is a powerful and adaptable backbone for a range of visual recognition tasks. Particularly, DSM outperforms previous transformer-based and MLP-based models, on image classification, object detection, and semantic segmentation tasks, such as 83.8 \% top-1 accuracy on ImageNet, and 49.9 \% mIoU on ADE20K.

  • 2 authors
·
Sep 13, 2023

Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction

Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.

  • 4 authors
·
Oct 15, 2021

A Method for Identifying Farmland System Habitat Types Based on the Dynamic-Weighted Feature Fusion Network Model

Addressing the current lack of a standardized habitat classification system for cultivated land ecosystems, incomplete coverage of habitat types, and the inability of existing models to effectively integrate semantic and texture features-resulting in insufficient segmentation accuracy and blurred boundaries for multi-scale habitats (e.g., large-scale field plots and micro-habitats)-this study developed a comprehensively annotated ultra-high-resolution remote sensing image dataset encompassing 15 categories of cultivated land system habitats. Furthermore, we propose a Dynamic-Weighted Feature Fusion Network (DWFF-Net). The encoder of this model utilizes a frozen-parameter DINOv3 to extract foundational features. By analyzing the relationships between different category images and feature maps, we introduce a data-level adaptive dynamic weighting strategy for feature fusion. The decoder incorporates a dynamic weight computation network to achieve thorough integration of multi-layer features, and a hybrid loss function is adopted to optimize model training. Experimental results on the constructed dataset demonstrate that the proposed model achieves a mean Intersection over Union (mIoU) of 0.6979 and an F1-score of 0.8049, outperforming the baseline network by 0.021 and 0.0161, respectively. Ablation studies further confirm the complementary nature of multi-layer feature fusion, which effectively improves the IoU for micro-habitat categories such as field ridges. This study establishes a habitat identification framework for cultivated land systems based on adaptive multi-layer feature fusion, enabling sub-meter precision habitat mapping at a low cost and providing robust technical support for fine-grained habitat monitoring in cultivated landscapes.

  • 5 authors
·
Nov 10

DVPT: Dynamic Visual Prompt Tuning of Large Pre-trained Models for Medical Image Analysis

Limited labeled data makes it hard to train models from scratch in medical domain, and an important paradigm is pre-training and then fine-tuning. Large pre-trained models contain rich representations, which can be adapted to downstream medical tasks. However, existing methods either tune all the parameters or the task-specific layers of the pre-trained models, ignoring the input variations of medical images, and thus they are not efficient or effective. In this work, we aim to study parameter-efficient fine-tuning (PEFT) for medical image analysis, and propose a dynamic visual prompt tuning method, named DVPT. It can extract knowledge beneficial to downstream tasks from large models with a few trainable parameters. Firstly, the frozen features are transformed by an lightweight bottleneck layer to learn the domain-specific distribution of downstream medical tasks, and then a few learnable visual prompts are used as dynamic queries and then conduct cross-attention with the transformed features, attempting to acquire sample-specific knowledge that are suitable for each sample. Finally, the features are projected to original feature dimension and aggregated with the frozen features. This DVPT module can be shared between different Transformer layers, further reducing the trainable parameters. To validate DVPT, we conduct extensive experiments with different pre-trained models on medical classification and segmentation tasks. We find such PEFT method can not only efficiently adapt the pre-trained models to the medical domain, but also brings data efficiency with partial labeled data. For example, with 0.5\% extra trainable parameters, our method not only outperforms state-of-the-art PEFT methods, even surpasses the full fine-tuning by more than 2.20\% Kappa score on medical classification task. It can saves up to 60\% labeled data and 99\% storage cost of ViT-B/16.

  • 5 authors
·
Jul 19, 2023

Instance-aware Dynamic Prompt Tuning for Pre-trained Point Cloud Models

Pre-trained point cloud models have found extensive applications in 3D understanding tasks like object classification and part segmentation. However, the prevailing strategy of full fine-tuning in downstream tasks leads to large per-task storage overhead for model parameters, which limits the efficiency when applying large-scale pre-trained models. Inspired by the recent success of visual prompt tuning (VPT), this paper attempts to explore prompt tuning on pre-trained point cloud models, to pursue an elegant balance between performance and parameter efficiency. We find while instance-agnostic static prompting, e.g. VPT, shows some efficacy in downstream transfer, it is vulnerable to the distribution diversity caused by various types of noises in real-world point cloud data. To conquer this limitation, we propose a novel Instance-aware Dynamic Prompt Tuning (IDPT) strategy for pre-trained point cloud models. The essence of IDPT is to develop a dynamic prompt generation module to perceive semantic prior features of each point cloud instance and generate adaptive prompt tokens to enhance the model's robustness. Notably, extensive experiments demonstrate that IDPT outperforms full fine-tuning in most tasks with a mere 7% of the trainable parameters, providing a promising solution to parameter-efficient learning for pre-trained point cloud models. Code is available at https://github.com/zyh16143998882/ICCV23-IDPT.

  • 6 authors
·
Apr 14, 2023

A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.

  • 8 authors
·
Jul 7, 2023

GreedyViG: Dynamic Axial Graph Construction for Efficient Vision GNNs

Vision graph neural networks (ViG) offer a new avenue for exploration in computer vision. A major bottleneck in ViGs is the inefficient k-nearest neighbor (KNN) operation used for graph construction. To solve this issue, we propose a new method for designing ViGs, Dynamic Axial Graph Construction (DAGC), which is more efficient than KNN as it limits the number of considered graph connections made within an image. Additionally, we propose a novel CNN-GNN architecture, GreedyViG, which uses DAGC. Extensive experiments show that GreedyViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification, object detection, instance segmentation, and semantic segmentation tasks. Our smallest model, GreedyViG-S, achieves 81.1% top-1 accuracy on ImageNet-1K, 2.9% higher than Vision GNN and 2.2% higher than Vision HyperGraph Neural Network (ViHGNN), with less GMACs and a similar number of parameters. Our largest model, GreedyViG-B obtains 83.9% top-1 accuracy, 0.2% higher than Vision GNN, with a 66.6% decrease in parameters and a 69% decrease in GMACs. GreedyViG-B also obtains the same accuracy as ViHGNN with a 67.3% decrease in parameters and a 71.3% decrease in GMACs. Our work shows that hybrid CNN-GNN architectures not only provide a new avenue for designing efficient models, but that they can also exceed the performance of current state-of-the-art models.

  • 4 authors
·
May 10, 2024

In the Search for Optimal Multi-view Learning Models for Crop Classification with Global Remote Sensing Data

Studying and analyzing cropland is a difficult task due to its dynamic and heterogeneous growth behavior. Usually, diverse data sources can be collected for its estimation. Although deep learning models have proven to excel in the crop classification task, they face substantial challenges when dealing with multiple inputs, named Multi-View Learning (MVL). The methods used in the MVL scenario can be structured based on the encoder architecture, the fusion strategy, and the optimization technique. The literature has primarily focused on using specific encoder architectures for local regions, lacking a deeper exploration of other components in the MVL methodology. In contrast, we investigate the simultaneous selection of the fusion strategy and encoder architecture, assessing global-scale cropland and crop-type classifications. We use a range of five fusion strategies (Input, Feature, Decision, Ensemble, Hybrid) and five temporal encoders (LSTM, GRU, TempCNN, TAE, L-TAE) as possible configurations in the MVL method. We use the CropHarvest dataset for validation, which provides optical, radar, weather time series, and topographic information as input data. We found that in scenarios with a limited number of labeled samples, a unique configuration is insufficient for all the cases. Instead, a specialized combination should be meticulously sought, including an encoder and fusion strategy. To streamline this search process, we suggest identifying the optimal encoder architecture tailored for a particular fusion strategy, and then determining the most suitable fusion strategy for the classification task. We provide a methodological framework for researchers exploring crop classification through an MVL methodology.

  • 3 authors
·
Mar 25, 2024 1

Ugly Ducklings or Swans: A Tiered Quadruplet Network with Patient-Specific Mining for Improved Skin Lesion Classification

An ugly duckling is an obviously different skin lesion from surrounding lesions of an individual, and the ugly duckling sign is a criterion used to aid in the diagnosis of cutaneous melanoma by differentiating between highly suspicious and benign lesions. However, the appearance of pigmented lesions, can change drastically from one patient to another, resulting in difficulties in visual separation of ugly ducklings. Hence, we propose DMT-Quadruplet - a deep metric learning network to learn lesion features at two tiers - patient-level and lesion-level. We introduce a patient-specific quadruplet mining approach together with a tiered quadruplet network, to drive the network to learn more contextual information both globally and locally between the two tiers. We further incorporate a dynamic margin within the patient-specific mining to allow more useful quadruplets to be mined within individuals. Comprehensive experiments show that our proposed method outperforms traditional classifiers, achieving 54% higher sensitivity than a baseline ResNet18 CNN and 37% higher than a naive triplet network in classifying ugly duckling lesions. Visualisation of the data manifold in the metric space further illustrates that DMT-Quadruplet is capable of classifying ugly duckling lesions in both patient-specific and patient-agnostic manner successfully.

  • 7 authors
·
Sep 18, 2023

TransHP: Image Classification with Hierarchical Prompting

This paper explores a hierarchical prompting mechanism for the hierarchical image classification (HIC) task. Different from prior HIC methods, our hierarchical prompting is the first to explicitly inject ancestor-class information as a tokenized hint that benefits the descendant-class discrimination. We think it well imitates human visual recognition, i.e., humans may use the ancestor class as a prompt to draw focus on the subtle differences among descendant classes. We model this prompting mechanism into a Transformer with Hierarchical Prompting (TransHP). TransHP consists of three steps: 1) learning a set of prompt tokens to represent the coarse (ancestor) classes, 2) on-the-fly predicting the coarse class of the input image at an intermediate block, and 3) injecting the prompt token of the predicted coarse class into the intermediate feature. Though the parameters of TransHP maintain the same for all input images, the injected coarse-class prompt conditions (modifies) the subsequent feature extraction and encourages a dynamic focus on relatively subtle differences among the descendant classes. Extensive experiments show that TransHP improves image classification on accuracy (e.g., improving ViT-B/16 by +2.83% ImageNet classification accuracy), training data efficiency (e.g., +12.69% improvement under 10% ImageNet training data), and model explainability. Moreover, TransHP also performs favorably against prior HIC methods, showing that TransHP well exploits the hierarchical information. The code is available at: https://github.com/WangWenhao0716/TransHP.

  • 4 authors
·
Apr 13, 2023

Attention-based Dynamic Subspace Learners for Medical Image Analysis

Learning similarity is a key aspect in medical image analysis, particularly in recommendation systems or in uncovering the interpretation of anatomical data in images. Most existing methods learn such similarities in the embedding space over image sets using a single metric learner. Images, however, have a variety of object attributes such as color, shape, or artifacts. Encoding such attributes using a single metric learner is inadequate and may fail to generalize. Instead, multiple learners could focus on separate aspects of these attributes in subspaces of an overarching embedding. This, however, implies the number of learners to be found empirically for each new dataset. This work, Dynamic Subspace Learners, proposes to dynamically exploit multiple learners by removing the need of knowing apriori the number of learners and aggregating new subspace learners during training. Furthermore, the visual interpretability of such subspace learning is enforced by integrating an attention module into our method. This integrated attention mechanism provides a visual insight of discriminative image features that contribute to the clustering of image sets and a visual explanation of the embedding features. The benefits of our attention-based dynamic subspace learners are evaluated in the application of image clustering, image retrieval, and weakly supervised segmentation. Our method achieves competitive results with the performances of multiple learners baselines and significantly outperforms the classification network in terms of clustering and retrieval scores on three different public benchmark datasets. Moreover, our attention maps offer a proxy-labels, which improves the segmentation accuracy up to 15% in Dice scores when compared to state-of-the-art interpretation techniques.

  • 3 authors
·
Jun 17, 2022

Early Recognition of Sepsis with Gaussian Process Temporal Convolutional Networks and Dynamic Time Warping

Sepsis is a life-threatening host response to infection associated with high mortality, morbidity, and health costs. Its management is highly time-sensitive since each hour of delayed treatment increases mortality due to irreversible organ damage. Meanwhile, despite decades of clinical research, robust biomarkers for sepsis are missing. Therefore, detecting sepsis early by utilizing the affluence of high-resolution intensive care records has become a challenging machine learning problem. Recent advances in deep learning and data mining promise to deliver a powerful set of tools to efficiently address this task. This empirical study proposes two novel approaches for the early detection of sepsis: a deep learning model and a lazy learner based on time series distances. Our deep learning model employs a temporal convolutional network that is embedded in a Multi-task Gaussian Process Adapter framework, making it directly applicable to irregularly-spaced time series data. Our lazy learner, by contrast, is an ensemble approach that employs dynamic time warping. We frame the timely detection of sepsis as a supervised time series classification task. For this, we derive the most recent sepsis definition in an hourly resolution to provide the first fully accessible early sepsis detection environment. Seven hours before sepsis onset, our methods improve area under the precision--recall curve from 0.25 to 0.35/0.40 over the state of the art. This demonstrates that they are well-suited for detecting sepsis in the crucial earlier stages when management is most effective.

  • 5 authors
·
Feb 5, 2019 2

RSMamba: Remote Sensing Image Classification with State Space Model

Remote sensing image classification forms the foundation of various understanding tasks, serving a crucial function in remote sensing image interpretation. The recent advancements of Convolutional Neural Networks (CNNs) and Transformers have markedly enhanced classification accuracy. Nonetheless, remote sensing scene classification remains a significant challenge, especially given the complexity and diversity of remote sensing scenarios and the variability of spatiotemporal resolutions. The capacity for whole-image understanding can provide more precise semantic cues for scene discrimination. In this paper, we introduce RSMamba, a novel architecture for remote sensing image classification. RSMamba is based on the State Space Model (SSM) and incorporates an efficient, hardware-aware design known as the Mamba. It integrates the advantages of both a global receptive field and linear modeling complexity. To overcome the limitation of the vanilla Mamba, which can only model causal sequences and is not adaptable to two-dimensional image data, we propose a dynamic multi-path activation mechanism to augment Mamba's capacity to model non-causal data. Notably, RSMamba maintains the inherent modeling mechanism of the vanilla Mamba, yet exhibits superior performance across multiple remote sensing image classification datasets. This indicates that RSMamba holds significant potential to function as the backbone of future visual foundation models. The code will be available at https://github.com/KyanChen/RSMamba.

  • 6 authors
·
Mar 28, 2024

Simple Hack for Transformers against Heavy Long-Text Classification on a Time- and Memory-Limited GPU Service

Many NLP researchers rely on free computational services, such as Google Colab, to fine-tune their Transformer models, causing a limitation for hyperparameter optimization (HPO) in long-text classification due to the method having quadratic complexity and needing a bigger resource. In Indonesian, only a few works were found on long-text classification using Transformers. Most only use a small amount of data and do not report any HPO. In this study, using 18k news articles, we investigate which pretrained models are recommended to use based on the output length of the tokenizer. We then compare some hacks to shorten and enrich the sequences, which are the removals of stopwords, punctuation, low-frequency words, and recurring words. To get a fair comparison, we propose and run an efficient and dynamic HPO procedure that can be done gradually on a limited resource and does not require a long-running optimization library. Using the best hack found, we then compare 512, 256, and 128 tokens length. We find that removing stopwords while keeping punctuation and low-frequency words is the best hack. Some of our setups manage to outperform taking 512 first tokens using a smaller 128 or 256 first tokens which manage to represent the same information while requiring less computational resources. The findings could help developers to efficiently pursue optimal performance of the models using limited resources.

  • 4 authors
·
Mar 19, 2024

HARDVS: Revisiting Human Activity Recognition with Dynamic Vision Sensors

The main streams of human activity recognition (HAR) algorithms are developed based on RGB cameras which are suffered from illumination, fast motion, privacy-preserving, and large energy consumption. Meanwhile, the biologically inspired event cameras attracted great interest due to their unique features, such as high dynamic range, dense temporal but sparse spatial resolution, low latency, low power, etc. As it is a newly arising sensor, even there is no realistic large-scale dataset for HAR. Considering its great practical value, in this paper, we propose a large-scale benchmark dataset to bridge this gap, termed HARDVS, which contains 300 categories and more than 100K event sequences. We evaluate and report the performance of multiple popular HAR algorithms, which provide extensive baselines for future works to compare. More importantly, we propose a novel spatial-temporal feature learning and fusion framework, termed ESTF, for event stream based human activity recognition. It first projects the event streams into spatial and temporal embeddings using StemNet, then, encodes and fuses the dual-view representations using Transformer networks. Finally, the dual features are concatenated and fed into a classification head for activity prediction. Extensive experiments on multiple datasets fully validated the effectiveness of our model. Both the dataset and source code will be released on https://github.com/Event-AHU/HARDVS.

  • 8 authors
·
Nov 17, 2022

EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at https://github.com/IBM/EvolveGCN.

  • 9 authors
·
Feb 26, 2019

MM-DREX: Multimodal-Driven Dynamic Routing of LLM Experts for Financial Trading

The inherent non-stationarity of financial markets and the complexity of multi-modal information pose significant challenges to existing quantitative trading models. Traditional methods relying on fixed structures and unimodal data struggle to adapt to market regime shifts, while large language model (LLM)-driven solutions - despite their multi-modal comprehension - suffer from static strategies and homogeneous expert designs, lacking dynamic adjustment and fine-grained decision mechanisms. To address these limitations, we propose MM-DREX: a Multimodal-driven, Dynamically-Routed EXpert framework based on large language models. MM-DREX explicitly decouples market state perception from strategy execution to enable adaptive sequential decision-making in non-stationary environments. Specifically, it (1) introduces a vision-language model (VLM)-powered dynamic router that jointly analyzes candlestick chart patterns and long-term temporal features to allocate real-time expert weights; (2) designs four heterogeneous trading experts (trend, reversal, breakout, positioning) generating specialized fine-grained sub-strategies; and (3) proposes an SFT-RL hybrid training paradigm to synergistically optimize the router's market classification capability and experts' risk-adjusted decision-making. Extensive experiments on multi-modal datasets spanning stocks, futures, and cryptocurrencies demonstrate that MM-DREX significantly outperforms 15 baselines (including state-of-the-art financial LLMs and deep reinforcement learning models) across key metrics: total return, Sharpe ratio, and maximum drawdown, validating its robustness and generalization. Additionally, an interpretability module traces routing logic and expert behavior in real time, providing an audit trail for strategy transparency.

  • 9 authors
·
Sep 5

AFM-Net: Advanced Fusing Hierarchical CNN Visual Priors with Global Sequence Modeling for Remote Sensing Image Scene Classification

Remote sensing image scene classification remains a challenging task, primarily due to the complex spatial structures and multi-scale characteristics of ground objects. Existing approaches see CNNs excel at modeling local textures, while Transformers excel at capturing global context. However, efficiently integrating them remains a bottleneck due to the high computational cost of Transformers. To tackle this, we propose AFM-Net, a novel Advanced Hierarchical Fusing framework that achieves effective local and global co-representation through two pathways: a CNN branch for extracting hierarchical visual priors, and a Mamba branch for efficient global sequence modeling. The core innovation of AFM-Net lies in its Hierarchical Fusion Mechanism, which progressively aggregates multi-scale features from both pathways, enabling dynamic cross-level feature interaction and contextual reconstruction to produce highly discriminative representations. These fused features are then adaptively routed through a Mixture-of-Experts classifier module, which dispatches them to the most suitable experts for fine-grained scene recognition. Experiments on AID, NWPU-RESISC45, and UC Merced show that AFM-Net obtains 93.72, 95.54, and 96.92 percent accuracy, surpassing state-of-the-art methods with balanced performance and efficiency. Code is available at https://github.com/tangyuanhao-qhu/AFM-Net.

  • 6 authors
·
Oct 30

ProJudge: A Multi-Modal Multi-Discipline Benchmark and Instruction-Tuning Dataset for MLLM-based Process Judges

As multi-modal large language models (MLLMs) frequently exhibit errors when solving scientific problems, evaluating the validity of their reasoning processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is laborious and costly, prompting MLLMs as automated process judges has become a common practice. However, the reliability of these model-based judges remains uncertain. To address this, we introduce ProJudgeBench, the first comprehensive benchmark specifically designed for evaluating abilities of MLLM-based process judges. ProJudgeBench comprises 2,400 test cases and 50,118 step-level labels, spanning four scientific disciplines with diverse difficulty levels and multi-modal content. In ProJudgeBench, each step is meticulously annotated by human experts for correctness, error type, and explanation, enabling a systematic evaluation of judges' capabilities to detect, classify and diagnose errors. Evaluation on ProJudgeBench reveals a significant performance gap between open-source and proprietary models. To bridge this gap, we further propose ProJudge-173k, a large-scale instruction-tuning dataset, and a Dynamic Dual-Phase fine-tuning strategy that encourages models to explicitly reason through problem-solving before assessing solutions. Both contributions significantly enhance the process evaluation capabilities of open-source models. All the resources will be released to foster future research of reliable multi-modal process evaluation.

Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation

Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization. However, their application to structured data analysis remains fragile due to inconsistencies in schema interpretation, misalignment between user intent and model output, and limited mechanisms for self-correction when failures occur. This paper introduces the STROT Framework (Structured Task Reasoning and Output Transformation), a method for structured prompting and feedback-driven transformation logic generation aimed at improving the reliability and semantic alignment of LLM-based analytical workflows. STROT begins with lightweight schema introspection and sample-based field classification, enabling dynamic context construction that captures both the structure and statistical profile of the input data. This contextual information is embedded in structured prompts that guide the model toward generating task-specific, interpretable outputs. To address common failure modes in complex queries, STROT incorporates a refinement mechanism in which the model iteratively revises its outputs based on execution feedback and validation signals. Unlike conventional approaches that rely on static prompts or single-shot inference, STROT treats the LLM as a reasoning agent embedded within a controlled analysis loop -- capable of adjusting its output trajectory through planning and correction. The result is a robust and reproducible framework for reasoning over structured data with LLMs, applicable to diverse data exploration and analysis tasks where interpretability, stability, and correctness are essential.

  • 1 authors
·
May 2

Automated Chronotyping from a Daily Calendar using Machine Learning

Chronotype compares individuals' circadian phase to others. It contextualizes mental health risk assessments and detection of social jet lag, which can hamper mental health and cognitive performance. Existing ways of determining chronotypes, such as Dim Light Melatonin Onset (DLMO) or the Morningness-Eveningness Questionnaire (MEQ), are limited by being discrete in time and time-intensive to update, meaning they rarely capture real-world variability across time. Chronotyping users based on a daily planner app might augment existing methods to enable assessment continuously and at scale. This paper reports the construction of a supervised binary classifier that attempts to demonstrate the feasibility of this approach. 1,460 registered users from the Owaves app opted in by filling out the MEQ survey between July 14, 2022, and May 1, 2023. 142 met the eligibility criteria. We used multimodal app data from individuals identified as morning and evening types from MEQ data, basing the classifier on app time series data. This included daily timing for 8 main lifestyle activity types: exercise, sleep, social interactions, meal times, relaxation, work, play, and miscellaneous, as defined in the app. The timing of activities showed substantial change across time, as well as heterogeneity by activity type. Our novel chronotyping classifier was able to predict the morningness and eveningness of its users with an ROC AUC of 0.70. Our findings demonstrate the feasibility of chronotype classification from multimodal, real-world app data, while highlighting fundamental challenges to applying discrete and fixed labels to complex, dynamic, multimodal behaviors. Our findings suggest a potential for real-time monitoring of shifts in chronotype specific to different causes (i.e. types of activity), which could feasibly be used to support future, prospective mental health support research.

  • 7 authors
·
Jul 8, 2024

Role of Locality and Weight Sharing in Image-Based Tasks: A Sample Complexity Separation between CNNs, LCNs, and FCNs

Vision tasks are characterized by the properties of locality and translation invariance. The superior performance of convolutional neural networks (CNNs) on these tasks is widely attributed to the inductive bias of locality and weight sharing baked into their architecture. Existing attempts to quantify the statistical benefits of these biases in CNNs over locally connected convolutional neural networks (LCNs) and fully connected neural networks (FCNs) fall into one of the following categories: either they disregard the optimizer and only provide uniform convergence upper bounds with no separating lower bounds, or they consider simplistic tasks that do not truly mirror the locality and translation invariance as found in real-world vision tasks. To address these deficiencies, we introduce the Dynamic Signal Distribution (DSD) classification task that models an image as consisting of k patches, each of dimension d, and the label is determined by a d-sparse signal vector that can freely appear in any one of the k patches. On this task, for any orthogonally equivariant algorithm like gradient descent, we prove that CNNs require O(k+d) samples, whereas LCNs require Omega(kd) samples, establishing the statistical advantages of weight sharing in translation invariant tasks. Furthermore, LCNs need O(k(k+d)) samples, compared to Omega(k^2d) samples for FCNs, showcasing the benefits of locality in local tasks. Additionally, we develop information theoretic tools for analyzing randomized algorithms, which may be of interest for statistical research.

  • 5 authors
·
Mar 22, 2024

Pareto Domain Adaptation

Domain adaptation (DA) attempts to transfer the knowledge from a labeled source domain to an unlabeled target domain that follows different distribution from the source. To achieve this, DA methods include a source classification objective to extract the source knowledge and a domain alignment objective to diminish the domain shift, ensuring knowledge transfer. Typically, former DA methods adopt some weight hyper-parameters to linearly combine the training objectives to form an overall objective. However, the gradient directions of these objectives may conflict with each other due to domain shift. Under such circumstances, the linear optimization scheme might decrease the overall objective value at the expense of damaging one of the training objectives, leading to restricted solutions. In this paper, we rethink the optimization scheme for DA from a gradient-based perspective. We propose a Pareto Domain Adaptation (ParetoDA) approach to control the overall optimization direction, aiming to cooperatively optimize all training objectives. Specifically, to reach a desirable solution on the target domain, we design a surrogate loss mimicking target classification. To improve target-prediction accuracy to support the mimicking, we propose a target-prediction refining mechanism which exploits domain labels via Bayes' theorem. On the other hand, since prior knowledge of weighting schemes for objectives is often unavailable to guide optimization to approach the optimal solution on the target domain, we propose a dynamic preference mechanism to dynamically guide our cooperative optimization by the gradient of the surrogate loss on a held-out unlabeled target dataset. Extensive experiments on image classification and semantic segmentation benchmarks demonstrate the effectiveness of ParetoDA

  • 8 authors
·
Dec 8, 2021

HyperZ$\cdot$Z$\cdot$W Operator Connects Slow-Fast Networks for Full Context Interaction

The self-attention mechanism utilizes large implicit weight matrices, programmed through dot product-based activations with very few trainable parameters, to enable long sequence modeling. In this paper, we investigate the possibility of discarding residual learning by employing large implicit kernels to achieve full context interaction at each layer of the network. To accomplish it, we introduce coordinate-based implicit MLPs as a slow network to generate hyper-kernels for another fast convolutional network. To get context-varying weights for fast dynamic encoding, we propose a HyperZ{cdotZ{cdot}W} operator that connects hyper-kernels (W) and hidden activations (Z) through simple elementwise multiplication, followed by convolution of Z using the context-dependent W. Based on this design, we present a novel Terminator architecture that integrates hyper-kernels of different sizes to produce multi-branch hidden representations for enhancing the feature extraction capability of each layer. Additionally, a bottleneck layer is employed to compress the concatenated channels, allowing only valuable information to propagate to the subsequent layers. Notably, our model incorporates several innovative components and exhibits excellent properties, such as introducing local feedback error for updating the slow network, stable zero-mean features, faster training convergence, and fewer model parameters. Extensive experimental results on pixel-level 1D and 2D image classification benchmarks demonstrate the superior performance of our architecture.

  • 1 authors
·
Jan 31, 2024 1

Primal-Dual Mesh Convolutional Neural Networks

Recent works in geometric deep learning have introduced neural networks that allow performing inference tasks on three-dimensional geometric data by defining convolution, and sometimes pooling, operations on triangle meshes. These methods, however, either consider the input mesh as a graph, and do not exploit specific geometric properties of meshes for feature aggregation and downsampling, or are specialized for meshes, but rely on a rigid definition of convolution that does not properly capture the local topology of the mesh. We propose a method that combines the advantages of both types of approaches, while addressing their limitations: we extend a primal-dual framework drawn from the graph-neural-network literature to triangle meshes, and define convolutions on two types of graphs constructed from an input mesh. Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them using an attention mechanism. At the same time, we introduce a pooling operation with a precise geometric interpretation, that allows handling variations in the mesh connectivity by clustering mesh faces in a task-driven fashion. We provide theoretical insights of our approach using tools from the mesh-simplification literature. In addition, we validate experimentally our method in the tasks of shape classification and shape segmentation, where we obtain comparable or superior performance to the state of the art.

  • 5 authors
·
Oct 23, 2020

Beyond Uniform Query Distribution: Key-Driven Grouped Query Attention

The Transformer architecture has revolutionized deep learning through its Self-Attention mechanism, which effectively captures contextual information. However, the memory footprint of Self-Attention presents significant challenges for long-sequence tasks. Grouped Query Attention (GQA) addresses this issue by grouping queries and mean-pooling the corresponding key-value heads - reducing the number of overall parameters and memory requirements in a flexible manner without adversely compromising model accuracy. In this work, we introduce enhancements to GQA, focusing on two novel approaches that deviate from the static nature of grouping: Key-Distributed GQA (KDGQA) and Dynamic Key-Distributed GQA (DGQA), which leverage information from the norms of the key heads to inform query allocation. Specifically, KDGQA looks at the ratios of the norms of the key heads during each forward pass, while DGQA examines the ratios of the norms as they evolve through training. Additionally, we present Perturbed GQA (PGQA) as a case-study, which introduces variability in (static) group formation via subtracting noise from the attention maps. Our experiments with up-trained Vision Transformers, for Image Classification on datasets such as CIFAR-10, CIFAR-100, Food101, and Tiny ImageNet, demonstrate the promise of these variants in improving upon the original GQA through more informed and adaptive grouping mechanisms: specifically ViT-L experiences accuracy gains of up to 8% when utilizing DGQA in comparison to GQA and other variants. We further analyze the impact of the number of Key-Value Heads on performance, underscoring the importance of utilizing query-key affinities. Code is available on GitHub.

  • 5 authors
·
Aug 15, 2024

Decoding Human Activities: Analyzing Wearable Accelerometer and Gyroscope Data for Activity Recognition

A person's movement or relative positioning effectively generates raw electrical signals that can be read by computing machines to apply various manipulative techniques for the classification of different human activities. In this paper, a stratified multi-structural approach based on a Residual network ensembled with Residual MobileNet is proposed, termed as FusionActNet. The proposed method involves using carefully designed Residual blocks for classifying the static and dynamic activities separately because they have clear and distinct characteristics that set them apart. These networks are trained independently, resulting in two specialized and highly accurate models. These models excel at recognizing activities within a specific superclass by taking advantage of the unique algorithmic benefits of architectural adjustments. Afterward, these two ResNets are passed through a weighted ensemble-based Residual MobileNet. Subsequently, this ensemble proficiently discriminates between a specific static and a specific dynamic activity, which were previously identified based on their distinct feature characteristics in the earlier stage. The proposed model is evaluated using two publicly accessible datasets; namely, UCI HAR and Motion-Sense. Therein, it successfully handled the highly confusing cases of data overlap. Therefore, the proposed approach achieves a state-of-the-art accuracy of 96.71% and 95.35% in the UCI HAR and Motion-Sense datasets respectively.

  • 5 authors
·
Oct 3, 2023

Astrea: A MOE-based Visual Understanding Model with Progressive Alignment

Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.

  • 15 authors
·
Mar 12

ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction

Vision-based semantic occupancy and flow prediction plays a crucial role in providing spatiotemporal cues for real-world tasks, such as autonomous driving. Existing methods prioritize higher accuracy to cater to the demands of these tasks. In this work, we strive to improve performance by introducing a series of targeted improvements for 3D semantic occupancy prediction and flow estimation. First, we introduce an occlusion-aware adaptive lifting mechanism with a depth denoising technique to improve the robustness of 2D-to-3D feature transformation and reduce the reliance on depth priors. Second, we strengthen the semantic consistency between 3D features and their original 2D modalities by utilizing shared semantic prototypes to jointly constrain both 2D and 3D features. This is complemented by confidence- and category-based sampling strategies to tackle long-tail challenges in 3D space. To alleviate the feature encoding burden in the joint prediction of semantics and flow, we propose a BEV cost volume-based prediction method that links flow and semantic features through a cost volume and employs a classification-regression supervision scheme to address the varying flow scales in dynamic scenes. Our purely convolutional architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy achieving state-of-the-art results on multiple benchmarks. On Occ3D and training without the camera visible mask, our ALOcc achieves an absolute gain of 2.5\% in terms of RayIoU while operating at a comparable speed compared to the state-of-the-art, using the same input size (256times704) and ResNet-50 backbone. Our method also achieves 2nd place in the CVPR24 Occupancy and Flow Prediction Competition.

  • 8 authors
·
Nov 12, 2024