new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Escaping Plato's Cave: Towards the Alignment of 3D and Text Latent Spaces

Recent works have shown that, when trained at scale, uni-modal 2D vision and text encoders converge to learned features that share remarkable structural properties, despite arising from different representations. However, the role of 3D encoders with respect to other modalities remains unexplored. Furthermore, existing 3D foundation models that leverage large datasets are typically trained with explicit alignment objectives with respect to frozen encoders from other representations. In this work, we investigate the possibility of a posteriori alignment of representations obtained from uni-modal 3D encoders compared to text-based feature spaces. We show that naive post-training feature alignment of uni-modal text and 3D encoders results in limited performance. We then focus on extracting subspaces of the corresponding feature spaces and discover that by projecting learned representations onto well-chosen lower-dimensional subspaces the quality of alignment becomes significantly higher, leading to improved accuracy on matching and retrieval tasks. Our analysis further sheds light on the nature of these shared subspaces, which roughly separate between semantic and geometric data representations. Overall, ours is the first work that helps to establish a baseline for post-training alignment of 3D uni-modal and text feature spaces, and helps to highlight both the shared and unique properties of 3D data compared to other representations.

  • 8 authors
·
Mar 7, 2025 2

Tuning-Free Image Editing with Fidelity and Editability via Unified Latent Diffusion Model

Balancing fidelity and editability is essential in text-based image editing (TIE), where failures commonly lead to over- or under-editing issues. Existing methods typically rely on attention injections for structure preservation and leverage the inherent text alignment capabilities of pre-trained text-to-image (T2I) models for editability, but they lack explicit and unified mechanisms to properly balance these two objectives. In this work, we introduce UnifyEdit, a tuning-free method that performs diffusion latent optimization to enable a balanced integration of fidelity and editability within a unified framework. Unlike direct attention injections, we develop two attention-based constraints: a self-attention (SA) preservation constraint for structural fidelity, and a cross-attention (CA) alignment constraint to enhance text alignment for improved editability. However, simultaneously applying both constraints can lead to gradient conflicts, where the dominance of one constraint results in over- or under-editing. To address this challenge, we introduce an adaptive time-step scheduler that dynamically adjusts the influence of these constraints, guiding the diffusion latent toward an optimal balance. Extensive quantitative and qualitative experiments validate the effectiveness of our approach, demonstrating its superiority in achieving a robust balance between structure preservation and text alignment across various editing tasks, outperforming other state-of-the-art methods. The source code will be available at https://github.com/CUC-MIPG/UnifyEdit.

What Matters For Safety Alignment?

This paper presents a comprehensive empirical study on the safety alignment capabilities. We evaluate what matters for safety alignment in LLMs and LRMs to provide essential insights for developing more secure and reliable AI systems. We systematically investigate and compare the influence of six critical intrinsic model characteristics and three external attack techniques. Our large-scale evaluation is conducted using 32 recent, popular LLMs and LRMs across thirteen distinct model families, spanning a parameter scale from 3B to 235B. The assessment leverages five established safety datasets and probes model vulnerabilities with 56 jailbreak techniques and four CoT attack strategies, resulting in 4.6M API calls. Our key empirical findings are fourfold. First, we identify the LRMs GPT-OSS-20B, Qwen3-Next-80B-A3B-Thinking, and GPT-OSS-120B as the top-three safest models, which substantiates the significant advantage of integrated reasoning and self-reflection mechanisms for robust safety alignment. Second, post-training and knowledge distillation may lead to a systematic degradation of safety alignment. We thus argue that safety must be treated as an explicit constraint or a core optimization objective during these stages, not merely subordinated to the pursuit of general capability. Third, we reveal a pronounced vulnerability: employing a CoT attack via a response prefix can elevate the attack success rate by 3.34x on average and from 0.6% to 96.3% for Seed-OSS-36B-Instruct. This critical finding underscores the safety risks inherent in text-completion interfaces and features that allow user-defined response prefixes in LLM services, highlighting an urgent need for architectural and deployment safeguards. Fourth, roleplay, prompt injection, and gradient-based search for adversarial prompts are the predominant methodologies for eliciting unaligned behaviors in modern models.

  • 6 authors
·
Jan 7

Optimizing Safe and Aligned Language Generation: A Multi-Objective GRPO Approach

Aligning large language models (LLMs) with human values and safety constraints is challenging, especially when objectives like helpfulness, truthfulness, and avoidance of harm conflict. Reinforcement Learning from Human Feedback (RLHF) has achieved notable success in steering models, but is complex and can be unstable. Recent approaches such as Direct Preference Optimization (DPO) simplify preference-based fine-tuning but may introduce bias or trade-off certain objectives~dpo. In this work, we propose a Group Relative Policy Optimization (GRPO) framework with a multi-label reward regression model to achieve safe and aligned language generation. The GRPO algorithm optimizes a policy by comparing groups of sampled responses, eliminating the need for a separate value critic and improving training efficiency~grpo. We train a reward model to predict multiple alignment scores (e.g., safety, helpfulness, etc.), which are combined into a single reward signal. We provide a theoretical derivation for using this learned multi-aspect reward within GRPO and discuss its advantages and limitations. Empirically, our approach improves all the safety and quality metrics evaluated in language generation tasks on model scales (0.5B, 7B, and 14B parameters), demonstrating a robust balance of objectives. We compare GRPO to PPO-based RLHF and DPO, highlighting that GRPO achieves alignment with significantly lower computational cost and explicit multi-objective handling. \textbf{We will open-source all trained models at https://huggingface.co/hydroxai.

  • 4 authors
·
Mar 26, 2025