new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

RADIANT: Retrieval AugmenteD entIty-context AligNmenT -- Introducing RAG-ability and Entity-Context Divergence

As Large Language Models (LLMs) continue to advance, Retrieval-Augmented Generation (RAG) has emerged as a vital technique to enhance factual accuracy by integrating external knowledge into the generation process. However, LLMs often fail to faithfully integrate retrieved evidence into their generated responses, leading to factual inconsistencies. To quantify this gap, we introduce Entity-Context Divergence (ECD), a metric that measures the extent to which retrieved information is accurately reflected in model outputs. We systematically evaluate contemporary LLMs on their ability to preserve factual consistency in retrieval-augmented settings, a capability we define as RAG-ability. Our empirical analysis reveals that RAG-ability remains low across most LLMs, highlighting significant challenges in entity retention and context fidelity. This paper introduces Radiant (Retrieval AugmenteD entIty-context AligNmenT), a novel framework that merges RAG with alignment designed to optimize the interplay between retrieved evidence and generated content. Radiant extends Direct Preference Optimization (DPO) to teach LLMs how to integrate provided additional information into subsequent generations. As a behavior correction mechanism, Radiant boosts RAG performance across varied retrieval scenarios, such as noisy web contexts, knowledge conflicts, and hallucination reduction. This enables more reliable, contextually grounded, and factually coherent content generation.

  • 14 authors
·
Jun 28, 2025

RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models

The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model's generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RULE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy. We publicly release our benchmark and code in https://github.com/richard-peng-xia/RULE.

  • 8 authors
·
Jul 6, 2024 3

Retrieval-Augmented Generation with Estimation of Source Reliability

Retrieval-Augmented Generation (RAG) is an effective approach to enhance the factual accuracy of large language models (LLMs) by retrieving information from external databases, which are typically composed of diverse sources, to supplement the limited internal knowledge of LLMs. However, the standard RAG often risks retrieving incorrect information, as it relies solely on relevance between a query and a document, overlooking the heterogeneous reliability of these sources. To address this issue, we propose Reliability-Aware RAG (RA-RAG), a new multi-source RAG framework that estimates the reliability of sources and leverages this information to prioritize highly reliable and relevant documents, ensuring more robust and accurate response generation. Specifically, RA-RAG first estimates source reliability by cross-checking information across multiple sources. It then retrieves documents from the top-kappa reliable and relevant sources and aggregates their information using weighted majority voting (WMV), where the selective retrieval ensures scalability while not compromising the performance. Comprehensive experiments show that RA-RAG consistently outperforms baselines in scenarios with heterogeneous source reliability while scaling efficiently as the number of sources increases. Furthermore, we demonstrate the ability of RA-RAG to estimate real-world sources' reliability, highlighting its practical applicability. Our code and data are available at \href{https://github.com/ml-postech/RA-RAG{RA-RAG}.}

  • 6 authors
·
Oct 30, 2024