- Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs. 5 authors · Jun 1, 2021
- An Empirical Analysis on the Vulnerabilities of End-to-End Speech Segregation Models End-to-end learning models have demonstrated a remarkable capability in performing speech segregation. Despite their wide-scope of real-world applications, little is known about the mechanisms they employ to group and consequently segregate individual speakers. Knowing that harmonicity is a critical cue for these networks to group sources, in this work, we perform a thorough investigation on ConvTasnet and DPT-Net to analyze how they perform a harmonic analysis of the input mixture. We perform ablation studies where we apply low-pass, high-pass, and band-stop filters of varying pass-bands to empirically analyze the harmonics most critical for segregation. We also investigate how these networks decide which output channel to assign to an estimated source by introducing discontinuities in synthetic mixtures. We find that end-to-end networks are highly unstable, and perform poorly when confronted with deformations which are imperceptible to humans. Replacing the encoder in these networks with a spectrogram leads to lower overall performance, but much higher stability. This work helps us to understand what information these network rely on for speech segregation, and exposes two sources of generalization-errors. It also pinpoints the encoder as the part of the network responsible for these errors, allowing for a redesign with expert knowledge or transfer learning. 4 authors · Jun 19, 2022
- Walrus: A Cross-Domain Foundation Model for Continuum Dynamics Foundation models have transformed machine learning for language and vision, but achieving comparable impact in physical simulation remains a challenge. Data heterogeneity and unstable long-term dynamics inhibit learning from sufficiently diverse dynamics, while varying resolutions and dimensionalities challenge efficient training on modern hardware. Through empirical and theoretical analysis, we incorporate new approaches to mitigate these obstacles, including a harmonic-analysis-based stabilization method, load-balanced distributed 2D and 3D training strategies, and compute-adaptive tokenization. Using these tools, we develop Walrus, a transformer-based foundation model developed primarily for fluid-like continuum dynamics. Walrus is pretrained on nineteen diverse scenarios spanning astrophysics, geoscience, rheology, plasma physics, acoustics, and classical fluids. Experiments show that Walrus outperforms prior foundation models on both short and long term prediction horizons on downstream tasks and across the breadth of pretraining data, while ablation studies confirm the value of our contributions to forecast stability, training throughput, and transfer performance over conventional approaches. Code and weights are released for community use. 25 authors · Nov 19, 2025
- How Powerful are Shallow Neural Networks with Bandlimited Random Weights? We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function. 5 authors · Aug 19, 2020
- Perception-Inspired Graph Convolution for Music Understanding Tasks We propose a new graph convolutional block, called MusGConv, specifically designed for the efficient processing of musical score data and motivated by general perceptual principles. It focuses on two fundamental dimensions of music, pitch and rhythm, and considers both relative and absolute representations of these components. We evaluate our approach on four different musical understanding problems: monophonic voice separation, harmonic analysis, cadence detection, and composer identification which, in abstract terms, translate to different graph learning problems, namely, node classification, link prediction, and graph classification. Our experiments demonstrate that MusGConv improves the performance on three of the aforementioned tasks while being conceptually very simple and efficient. We interpret this as evidence that it is beneficial to include perception-informed processing of fundamental musical concepts when developing graph network applications on musical score data. 3 authors · May 15, 2024
1 MVDR Beamforming for Cyclostationary Processes Conventional acoustic beamformers assume that noise is stationary within short time frames. This assumption prevents them from exploiting correlations between frequencies in almost-periodic noise sources such as musical instruments, fans, and engines. These signals exhibit periodically varying statistics and are better modeled as cyclostationary processes. This paper introduces the cyclic MVDR (cMVDR) beamformer, an extension of the conventional MVDR that leverages both spatial and spectral correlations to improve noise reduction, particularly in low-SNR scenarios. The method builds on frequency-shifted (FRESH) filtering, where shifted versions of the input are combined to attenuate or amplify components that are coherent across frequency. To address inharmonicity, where harmonic partials deviate from exact integer multiples of the fundamental frequency, we propose a data-driven strategy that estimates resonant frequencies via periodogram analysis and computes the frequency shifts from their spacing. Analytical and experimental results demonstrate that performance improves with increasing spectral correlation. On real recordings, the cMVDR achieves up to 5 dB gain in scale-invariant signal-to-distortion ratio (SI-SDR) over the MVDR and remains effective even with a single microphone. Code is available at https://github.com/Screeen/cMVDR. 4 authors · Oct 21, 2025