Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePhase-space analysis of the viscous fluid cosmological models in the coincident $f(Q)$ gravity
In this article, we consider a newly proposed parameterization of the viscosity coefficient zeta, specifically zeta=zeta_0 {Omega^s_m} H , where zeta_0 = zeta_0{{Omega^s_{m_0}}} within the coincident f(Q) gravity formalism. We consider a non-linear function f(Q)= -Q +alpha Q^n, where alpha and n are arbitrary model parameters, which is a power-law correction to the STEGR scenario. We find an autonomous system by invoking the dimensionless density parameters as the governing phase-space variables. We discuss the physical significance of the model corresponding to the parameter choices n=-1 and n=2 along with the exponent choices s=0, 0.5, and 1.05. We find that model I shows the stable de-Sitter type or stable phantom type (depending on the choice of exponent s) behavior with no transition epoch, whereas model II shows the evolutionary phase from the radiation epoch to the accelerated de-Sitter epoch via passing through the matter-dominated epoch. Hence, we conclude that model I provides a good description of the late-time cosmology but fails to describe the transition epoch, whereas model II modifies the description in the context of the early universe and provides a good description of the matter and radiation era along with the transition phase.
An analysis of the transfer learning of convolutional neural networks for artistic images
Transfer learning from huge natural image datasets, fine-tuning of deep neural networks and the use of the corresponding pre-trained networks have become de facto the core of art analysis applications. Nevertheless, the effects of transfer learning are still poorly understood. In this paper, we first use techniques for visualizing the network internal representations in order to provide clues to the understanding of what the network has learned on artistic images. Then, we provide a quantitative analysis of the changes introduced by the learning process thanks to metrics in both the feature and parameter spaces, as well as metrics computed on the set of maximal activation images. These analyses are performed on several variations of the transfer learning procedure. In particular, we observed that the network could specialize some pre-trained filters to the new image modality and also that higher layers tend to concentrate classes. Finally, we have shown that a double fine-tuning involving a medium-size artistic dataset can improve the classification on smaller datasets, even when the task changes.
Probing Invisible Decay of $Z^\prime$ at Muon Collider with Topological Data Analysis and Machine Learning
We explore the use of topological data analysis (TDA) combined with machine learning for discriminating standard model backgrounds from the invisible decay of the Z^prime boson associated with monophoton emission at a 3 TeV muon collider. Reconstructed events are mapped into a six-dimensional kinematic space and aggregated into bags of events, from which persistent homology is used to extract Betti number distributions. Within the Multiple Instance Learning paradigm, classifiers trained on these topological descriptors demonstrate significantly improved classification accuracy compared to the conventional ML approaches based on event-wise kinematic inputs. We also draw exclusion contours at 95\% CL in the (m_{Z^prime}, m_chi) parameter space, highlighting the potential of topological features to extend the discovery reach of future collider experiments.
Boson Stars Hosting Black Holes
We study a system of a self-gravitating condensate, a boson star, formed from scalar ultra-light dark matter (ULDM), with a black hole hosted at its center. We numerically solve the equations of hydrostatic equilibrium in the non-relativistic limit, consistently incorporating the gravitational potential of the black hole, to obtain all possible configurations of this BS-BH system for different boson star masses, interaction types, and black hole masses. We also propose an analytic expression for the density profile and compare it with the numerical results, finding good agreement for attractive interactions and for a finite range of mass ratios between the black hole and boson star. Finally, considering the inspiral of this BS-BH system with a second, smaller black hole, we study the dephasing of gravitational waves due to the presence of the ULDM environment. A Fisher matrix analysis reveals the regions of parameter space of the ULDM mass and self-coupling that future gravitational-wave observatories such as LISA can probe.
Dynamical Dark Energy from a Massive Vector Field in Generalized Proca Theory
In this paper, we emphasise the recent observational findings from the Dark Energy Spectroscopic Instrument Data Release 2 (DESI DR2), which provide compelling evidence for a possible deviation from the standard ΛCDM (Cold Dark Matter) cosmology, suggesting the presence of a dynamically evolving effective dark energy component. Motivated by this, we construct a theoretical framework in which a massive cosmological vector field, B^μ, couples non-minimally to the background curvature through marginal interactions, offering a controlled mechanism to realise the deviation from the ΛCDM model. A detailed analysis of the effective Equation of State (EoS) parameter w(tilde H) reveals a narrow region of parameter space consistent with current cosmological observations presented by DESI. The analysis yields a stringent upper bound for the coupling constant λ to be λ<2.98times10^{-11}, a very strong bound on mass 3.1356times10^{-66}~g leq m leq 3.3627times10^{-66}~g, and the admissible range -0.405 leq log_{10}tildeγleq -0.38 for which present-day value w_0 = w(tilde H = 1) corresponding to a deviation δ= w_0 + 1 that lies within the region 0.107 leq δleq 0.217. This interval reproduces the deviation inferred from the combined DESI, Cosmic Microwave Background (CMB), and Pantheon+ data, reflecting a controlled departure from the ΛCDM behaviour. In summary, the results suggest that the proposed framework of a massive vector field can account for the departure from ΛCDM behaviour highlighted by DESI in the current cosmic acceleration. Furthermore, the framework approaches the ΛCDM behaviour in late-time tgtrsim28 Gyr, establishing a direct phenomenological link between the underlying parameters and the observed dynamical nature of dark energy.
Solitons near avoided mode crossing in $χ^{(2)}$ nanowaveguides
We present a model for chi^{(2)} waveguides accounting for three modes, two of which make an avoided crossing at the second harmonic wavelength. We introduce two linearly coupled pure modes and adjust the coupling to replicate the waveguide dispersion near the avoided crossing. Analysis of the nonlinear system reveals continuous wave (CW) solutions across much of the parameter-space and prevalence of its modulational instability. We also predict the existence of the avoided-crossing solitons, and study peculiarities of their dynamics and spectral properties, which include formation of a pedestal in the pulse tails and associated pronounced spectral peaks. Mapping these solitons onto the linear dispersion diagrams, we make connections between their existence and CW existence and stability. We also simulate the two-color soliton generation from a single frequency pump pulse to back up its formation and stability properties.
Pre-trained knowledge elevates large language models beyond traditional chemical reaction optimizers
Modern optimization in experimental chemistry employs algorithmic search through black-box parameter spaces. Here we demonstrate that pre-trained knowledge in large language models (LLMs) fundamentally changes this paradigm. Using six fully enumerated categorical reaction datasets (768 - 5,684 experiments), we benchmark LLM-guided optimization (LLM-GO) against Bayesian optimization (BO) and random sampling. Frontier LLMs consistently match or exceed BO performance across five single-objective datasets, with advantages growing as parameter complexity increases and high-performing conditions become scarce (<5% of space). BO retains superiority only for explicit multi-objective trade-offs. To understand these contrasting behaviors, we introduce a topology-agnostic information theory framework quantifying sampling diversity throughout optimization campaigns. This analysis reveals that LLMs maintain systematically higher exploration entropy than BO across all datasets while achieving superior performance, with advantages most pronounced in solution-scarce parameter spaces where high-entropy exploration typically fails - suggesting that pre-trained domain knowledge enables more effective navigation of chemical parameter space rather than replacing structured exploration strategies. To enable transparent benchmarking and community validation, we release Iron Mind (https://gomes.andrew.cmu.edu/iron-mind), a no-code platform for side-by-side evaluation of human, algorithmic, and LLM optimization campaigns with public leaderboards and complete trajectories. Our findings establish that LLM-GO excels precisely where traditional methods struggle: complex categorical spaces requiring domain understanding rather than mathematical optimization.
4+3 Phases of Compute-Optimal Neural Scaling Laws
We consider the solvable neural scaling model with three parameters: data complexity, target complexity, and model-parameter-count. We use this neural scaling model to derive new predictions about the compute-limited, infinite-data scaling law regime. To train the neural scaling model, we run one-pass stochastic gradient descent on a mean-squared loss. We derive a representation of the loss curves which holds over all iteration counts and improves in accuracy as the model parameter count grows. We then analyze the compute-optimal model-parameter-count, and identify 4 phases (+3 subphases) in the data-complexity/target-complexity phase-plane. The phase boundaries are determined by the relative importance of model capacity, optimizer noise, and embedding of the features. We furthermore derive, with mathematical proof and extensive numerical evidence, the scaling-law exponents in all of these phases, in particular computing the optimal model-parameter-count as a function of floating point operation budget.
DeTox: Toxic Subspace Projection for Model Editing
Recent alignment algorithms such as direct preference optimization (DPO) have been developed to improve the safety of large language models (LLMs) by training these models to match human behaviors exemplified by preference data. However, these methods are both computationally intensive and lacking in controllability and transparency, making them prone to jailbreaking and inhibiting their widespread use. Furthermore, these tuning-based methods require large-scale preference data for training and are susceptible to noisy preference data. In this paper, we introduce a tuning-free alignment alternative (DeTox) and demonstrate its effectiveness under the use case of toxicity reduction. Grounded on theory from factor analysis, DeTox is a sample-efficient model editing approach that identifies a toxic subspace in the model parameter space and reduces model toxicity by projecting away the detected subspace. The toxic sub-space is identified by extracting preference data embeddings from the language model, and removing non-toxic information from these embeddings. We show that DeTox is more sample-efficient than DPO, further showcasing greater robustness to noisy data. Finally, we establish both theoretical and empirical connections between DeTox and DPO, showing that DeTox can be interpreted as a denoised version of a single DPO step.
Improved Robustness for Deep Learning-based Segmentation of Multi-Center Myocardial Perfusion MRI Datasets Using Data Adaptive Uncertainty-guided Space-time Analysis
Background. Fully automatic analysis of myocardial perfusion MRI datasets enables rapid and objective reporting of stress/rest studies in patients with suspected ischemic heart disease. Developing deep learning techniques that can analyze multi-center datasets despite limited training data and variations in software and hardware is an ongoing challenge. Methods. Datasets from 3 medical centers acquired at 3T (n = 150 subjects) were included: an internal dataset (inD; n = 95) and two external datasets (exDs; n = 55) used for evaluating the robustness of the trained deep neural network (DNN) models against differences in pulse sequence (exD-1) and scanner vendor (exD-2). A subset of inD (n = 85) was used for training/validation of a pool of DNNs for segmentation, all using the same spatiotemporal U-Net architecture and hyperparameters but with different parameter initializations. We employed a space-time sliding-patch analysis approach that automatically yields a pixel-wise "uncertainty map" as a byproduct of the segmentation process. In our approach, a given test case is segmented by all members of the DNN pool and the resulting uncertainty maps are leveraged to automatically select the "best" one among the pool of solutions. Results. The proposed DAUGS analysis approach performed similarly to the established approach on the internal dataset (p = n.s.) whereas it significantly outperformed on the external datasets (p < 0.005 for exD-1 and exD-2). Moreover, the number of image series with "failed" segmentation was significantly lower for the proposed vs. the established approach (4.3% vs. 17.1%, p < 0.0005). Conclusions. The proposed DAUGS analysis approach has the potential to improve the robustness of deep learning methods for segmentation of multi-center stress perfusion datasets with variations in the choice of pulse sequence, site location or scanner vendor.
Parameter-Efficient Fine-Tuning of State Space Models
Deep State Space Models (SSMs), such as Mamba (Gu & Dao, 2024), have become powerful tools for language modeling, offering high performance and linear scalability with sequence length. However, the application of parameter-efficient fine-tuning (PEFT) methods to SSM-based models remains largely underexplored. We start by investigating two fundamental questions on existing PEFT methods: (i) How do they perform on SSM-based models? (ii) Which parameters should they target for optimal results? Our analysis shows that LoRA and its variants consistently outperform all other PEFT methods. While LoRA is effective for linear projection matrices, it fails on SSM modules-yet still outperforms other methods applicable to SSMs, indicating their limitations. This underscores the need for a specialized SSM tuning approach. To address this, we propose Sparse Dimension Tuning (SDT), a PEFT method tailored for SSM modules. Combining SDT for SSMs with LoRA for linear projection matrices, we achieve state-of-the-art performance across extensive experiments.
An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation
Finding the optimal Retrieval-Augmented Generation (RAG) configuration for a given use case can be complex and expensive. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To address this gap, we present a comprehensive study involving 5 HPO algorithms over 5 datasets from diverse domains, including a new one collected for this work on real-world product documentation. Our study explores the largest HPO search space considered to date, with two optimized evaluation metrics. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with iterative random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing models first is preferable to the prevalent practice of optimizing sequentially according to the RAG pipeline order.
A Comparative Analysis of Contextual Representation Flow in State-Space and Transformer Architectures
State Space Models (SSMs) have recently emerged as efficient alternatives to Transformer-Based Models (TBMs) for long-sequence processing, offering linear scaling and lower memory use. Yet, how contextual information flows across layers and tokens in these architectures remains understudied. We present the first unified, token- and layer-level analysis of representation propagation in SSMs and TBMs. Using centered kernel alignment, stability metrics, and probing, we characterize how representations evolve within and across layers. We find a key divergence: TBMs rapidly homogenize token representations, with diversity reemerging only in later layers, while SSMs preserve token uniqueness early but converge to homogenization deeper. Theoretical analysis and parameter randomization further reveal that oversmoothing in TBMs stems from architectural design, whereas in SSMs it arises mainly from training dynamics. These insights clarify the inductive biases of both architectures and inform future model and training designs for long-context reasoning.
ISCS: Parameter-Guided Channel Ordering and Grouping for Learned Image Compression
Prior studies in learned image compression (LIC) consistently show that only a small subset of latent channels is critical for reconstruction, while many others carry limited information. Exploiting this imbalance could improve both coding and computational efficiency, yet existing approaches often rely on costly, dataset-specific ablation tests and typically analyze channels in isolation, ignoring their interdependencies. We propose a generalizable, dataset-agnostic method to identify and organize important channels in pretrained VAE-based LIC models. Instead of brute-force empirical evaluations, our approach leverages intrinsic parameter statistics-weight variances, bias magnitudes, and pairwise correlations-to estimate channel importance. This analysis reveals a consistent organizational structure, termed the Invariant Salient Channel Space (ISCS), where Salient-Core channels capture dominant structures and Salient-Auxiliary channels provide complementary details. Building on ISCS, we introduce a deterministic channel ordering and grouping strategy that enables slice-parallel decoding, reduces redundancy, and improves bitrate efficiency. Experiments across multiple LIC architectures demonstrate that our method effectively reduces bitrate and computation while maintaining reconstruction quality, providing a practical and modular enhancement to existing learned compression frameworks.
Analyzing Transformers in Embedding Space
Understanding Transformer-based models has attracted significant attention, as they lie at the heart of recent technological advances across machine learning. While most interpretability methods rely on running models over inputs, recent work has shown that a zero-pass approach, where parameters are interpreted directly without a forward/backward pass is feasible for some Transformer parameters, and for two-layer attention networks. In this work, we present a theoretical analysis where all parameters of a trained Transformer are interpreted by projecting them into the embedding space, that is, the space of vocabulary items they operate on. We derive a simple theoretical framework to support our arguments and provide ample evidence for its validity. First, an empirical analysis showing that parameters of both pretrained and fine-tuned models can be interpreted in embedding space. Second, we present two applications of our framework: (a) aligning the parameters of different models that share a vocabulary, and (b) constructing a classifier without training by ``translating'' the parameters of a fine-tuned classifier to parameters of a different model that was only pretrained. Overall, our findings open the door to interpretation methods that, at least in part, abstract away from model specifics and operate in the embedding space only.
Spectral Adapter: Fine-Tuning in Spectral Space
Recent developments in Parameter-Efficient Fine-Tuning (PEFT) methods for pretrained deep neural networks have captured widespread interest. In this work, we study the enhancement of current PEFT methods by incorporating the spectral information of pretrained weight matrices into the fine-tuning procedure. We investigate two spectral adaptation mechanisms, namely additive tuning and orthogonal rotation of the top singular vectors, both are done via first carrying out Singular Value Decomposition (SVD) of pretrained weights and then fine-tuning the top spectral space. We provide a theoretical analysis of spectral fine-tuning and show that our approach improves the rank capacity of low-rank adapters given a fixed trainable parameter budget. We show through extensive experiments that the proposed fine-tuning model enables better parameter efficiency and tuning performance as well as benefits multi-adapter fusion. The code will be open-sourced for reproducibility.
Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations
State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.
TSPulse: Dual Space Tiny Pre-Trained Models for Rapid Time-Series Analysis
The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters, making TSPulse 10-100X smaller than existing pre-trained models. Its efficiency enables GPU-free inference and rapid pre-training, setting a new standard for efficient time-series pre-trained models. Models will be open-sourced soon.
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
We explore and analyze the latent style space of StyleGAN2, a state-of-the-art architecture for image generation, using models pretrained on several different datasets. We first show that StyleSpace, the space of channel-wise style parameters, is significantly more disentangled than the other intermediate latent spaces explored by previous works. Next, we describe a method for discovering a large collection of style channels, each of which is shown to control a distinct visual attribute in a highly localized and disentangled manner. Third, we propose a simple method for identifying style channels that control a specific attribute, using a pretrained classifier or a small number of example images. Manipulation of visual attributes via these StyleSpace controls is shown to be better disentangled than via those proposed in previous works. To show this, we make use of a newly proposed Attribute Dependency metric. Finally, we demonstrate the applicability of StyleSpace controls to the manipulation of real images. Our findings pave the way to semantically meaningful and well-disentangled image manipulations via simple and intuitive interfaces.
PROST: Physical Reasoning of Objects through Space and Time
We present a new probing dataset named PROST: Physical Reasoning about Objects Through Space and Time. This dataset contains 18,736 multiple-choice questions made from 14 manually curated templates, covering 10 physical reasoning concepts. All questions are designed to probe both causal and masked language models in a zero-shot setting. We conduct an extensive analysis which demonstrates that state-of-the-art pretrained models are inadequate at physical reasoning: they are influenced by the order in which answer options are presented to them, they struggle when the superlative in a question is inverted (e.g., most <-> least), and increasing the amount of pretraining data and parameters only yields minimal improvements. These results provide support for the hypothesis that current pretrained models' ability to reason about physical interactions is inherently limited by a lack of real world experience. By highlighting these limitations, we hope to motivate the development of models with a human-like understanding of the physical world.
Visualization and Interpretation of Latent Spaces for Controlling Expressive Speech Synthesis through Audio Analysis
The field of Text-to-Speech has experienced huge improvements last years benefiting from deep learning techniques. Producing realistic speech becomes possible now. As a consequence, the research on the control of the expressiveness, allowing to generate speech in different styles or manners, has attracted increasing attention lately. Systems able to control style have been developed and show impressive results. However the control parameters often consist of latent variables and remain complex to interpret. In this paper, we analyze and compare different latent spaces and obtain an interpretation of their influence on expressive speech. This will enable the possibility to build controllable speech synthesis systems with an understandable behaviour.
Multi-Scale VMamba: Hierarchy in Hierarchy Visual State Space Model
Despite the significant achievements of Vision Transformers (ViTs) in various vision tasks, they are constrained by the quadratic complexity. Recently, State Space Models (SSMs) have garnered widespread attention due to their global receptive field and linear complexity with respect to the input length, demonstrating substantial potential across fields including natural language processing and computer vision. To improve the performance of SSMs in vision tasks, a multi-scan strategy is widely adopted, which leads to significant redundancy of SSMs. For a better trade-off between efficiency and performance, we analyze the underlying reasons behind the success of the multi-scan strategy, where long-range dependency plays an important role. Based on the analysis, we introduce Multi-Scale Vision Mamba (MSVMamba) to preserve the superiority of SSMs in vision tasks with limited parameters. It employs a multi-scale 2D scanning technique on both original and downsampled feature maps, which not only benefits long-range dependency learning but also reduces computational costs. Additionally, we integrate a Convolutional Feed-Forward Network (ConvFFN) to address the lack of channel mixing. Our experiments demonstrate that MSVMamba is highly competitive, with the MSVMamba-Tiny model achieving 82.8% top-1 accuracy on ImageNet, 46.9% box mAP, and 42.2% instance mAP with the Mask R-CNN framework, 1x training schedule on COCO, and 47.6% mIoU with single-scale testing on ADE20K.Code is available at https://github.com/YuHengsss/MSVMamba.
DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions
This study introduces a novel and interpretable model, DiffVox, for matching vocal effects in music production. DiffVox, short for ``Differentiable Vocal Fx", integrates parametric equalisation, dynamic range control, delay, and reverb with efficient differentiable implementations to enable gradient-based optimisation for parameter estimation. Vocal presets are retrieved from two datasets, comprising 70 tracks from MedleyDB and 365 tracks from a private collection. Analysis of parameter correlations highlights strong relationships between effects and parameters, such as the high-pass and low-shelf filters often behaving together to shape the low end, and the delay time correlates with the intensity of the delayed signals. Principal component analysis reveals connections to McAdams' timbre dimensions, where the most crucial component modulates the perceived spaciousness while the secondary components influence spectral brightness. Statistical testing confirms the non-Gaussian nature of the parameter distribution, highlighting the complexity of the vocal effects space. These initial findings on the parameter distributions set the foundation for future research in vocal effects modelling and automatic mixing. Our source code and datasets are accessible at https://github.com/SonyResearch/diffvox.
All That Glitters Is Not Gold: Key-Secured 3D Secrets within 3D Gaussian Splatting
Recent advances in 3D Gaussian Splatting (3DGS) have revolutionized scene reconstruction, opening new possibilities for 3D steganography by hiding 3D secrets within 3D covers. The key challenge in steganography is ensuring imperceptibility while maintaining high-fidelity reconstruction. However, existing methods often suffer from detectability risks and utilize only suboptimal 3DGS features, limiting their full potential. We propose a novel end-to-end key-secured 3D steganography framework (KeySS) that jointly optimizes a 3DGS model and a key-secured decoder for secret reconstruction. Our approach reveals that Gaussian features contribute unequally to secret hiding. The framework incorporates a key-controllable mechanism enabling multi-secret hiding and unauthorized access prevention, while systematically exploring optimal feature update to balance fidelity and security. To rigorously evaluate steganographic imperceptibility beyond conventional 2D metrics, we introduce 3D-Sinkhorn distance analysis, which quantifies distributional differences between original and steganographic Gaussian parameters in the representation space. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both cover and secret reconstruction while maintaining high security levels, advancing the field of 3D steganography. Code is available at https://github.com/RY-Paper/KeySS
