- Learned complex masks for multi-instrument source separation Music source separation in the time-frequency domain is commonly achieved by applying a soft or binary mask to the magnitude component of (complex) spectrograms. The phase component is usually not estimated, but instead copied from the mixture and applied to the magnitudes of the estimated isolated sources. While this method has several practical advantages, it imposes an upper bound on the performance of the system, where the estimated isolated sources inherently exhibit audible "phase artifacts". In this paper we address these shortcomings by directly estimating masks in the complex domain, extending recent work from the speech enhancement literature. The method is particularly well suited for multi-instrument musical source separation since residual phase artifacts are more pronounced for spectrally overlapping instrument sources, a common scenario in music. We show that complex masks result in better separation than masks that operate solely on the magnitude component. 4 authors · Mar 23, 2021
- FA-GAN: Artifacts-free and Phase-aware High-fidelity GAN-based Vocoder Generative adversarial network (GAN) based vocoders have achieved significant attention in speech synthesis with high quality and fast inference speed. However, there still exist many noticeable spectral artifacts, resulting in the quality decline of synthesized speech. In this work, we adopt a novel GAN-based vocoder designed for few artifacts and high fidelity, called FA-GAN. To suppress the aliasing artifacts caused by non-ideal upsampling layers in high-frequency components, we introduce the anti-aliased twin deconvolution module in the generator. To alleviate blurring artifacts and enrich the reconstruction of spectral details, we propose a novel fine-grained multi-resolution real and imaginary loss to assist in the modeling of phase information. Experimental results reveal that FA-GAN outperforms the compared approaches in promoting audio quality and alleviating spectral artifacts, and exhibits superior performance when applied to unseen speaker scenarios. 3 authors · Jul 5, 2024 1
- Temporal Score Analysis for Understanding and Correcting Diffusion Artifacts Visual artifacts remain a persistent challenge in diffusion models, even with training on massive datasets. Current solutions primarily rely on supervised detectors, yet lack understanding of why these artifacts occur in the first place. In our analysis, we identify three distinct phases in the diffusion generative process: Profiling, Mutation, and Refinement. Artifacts typically emerge during the Mutation phase, where certain regions exhibit anomalous score dynamics over time, causing abrupt disruptions in the normal evolution pattern. This temporal nature explains why existing methods focusing only on spatial uncertainty of the final output fail at effective artifact localization. Based on these insights, we propose ASCED (Abnormal Score Correction for Enhancing Diffusion), that detects artifacts by monitoring abnormal score dynamics during the diffusion process, with a trajectory-aware on-the-fly mitigation strategy that appropriate generation of noise in the detected areas. Unlike most existing methods that apply post hoc corrections, \eg, by applying a noising-denoising scheme after generation, our mitigation strategy operates seamlessly within the existing diffusion process. Extensive experiments demonstrate that our proposed approach effectively reduces artifacts across diverse domains, matching or surpassing existing supervised methods without additional training. 4 authors · Mar 20, 2025
4 Sudden Drops in the Loss: Syntax Acquisition, Phase Transitions, and Simplicity Bias in MLMs Most interpretability research in NLP focuses on understanding the behavior and features of a fully trained model. However, certain insights into model behavior may only be accessible by observing the trajectory of the training process. We present a case study of syntax acquisition in masked language models (MLMs) that demonstrates how analyzing the evolution of interpretable artifacts throughout training deepens our understanding of emergent behavior. In particular, we study Syntactic Attention Structure (SAS), a naturally emerging property of MLMs wherein specific Transformer heads tend to focus on specific syntactic relations. We identify a brief window in pretraining when models abruptly acquire SAS, concurrent with a steep drop in loss. This breakthrough precipitates the subsequent acquisition of linguistic capabilities. We then examine the causal role of SAS by manipulating SAS during training, and demonstrate that SAS is necessary for the development of grammatical capabilities. We further find that SAS competes with other beneficial traits during training, and that briefly suppressing SAS improves model quality. These findings offer an interpretation of a real-world example of both simplicity bias and breakthrough training dynamics. 5 authors · Sep 13, 2023
- HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting Realistic 3D human generation from text prompts is a desirable yet challenging task. Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time. In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance. Our key insight is that 3D Gaussian Splatting is an efficient renderer with periodic Gaussian shrinkage or growing, where such adaptive density control can be naturally guided by intrinsic human structures. Specifically, 1) we first propose a Structure-Aware SDS that simultaneously optimizes human appearance and geometry. The multi-modal score function from both RGB and depth space is leveraged to distill the Gaussian densification and pruning process. 2) Moreover, we devise an Annealed Negative Prompt Guidance by decomposing SDS into a noisier generative score and a cleaner classifier score, which well addresses the over-saturation issue. The floating artifacts are further eliminated based on Gaussian size in a prune-only phase to enhance generation smoothness. Extensive experiments demonstrate the superior efficiency and competitive quality of our framework, rendering vivid 3D humans under diverse scenarios. Project Page: https://alvinliu0.github.io/projects/HumanGaussian 8 authors · Nov 28, 2023
- Make-A-Texture: Fast Shape-Aware Texture Generation in 3 Seconds We present Make-A-Texture, a new framework that efficiently synthesizes high-resolution texture maps from textual prompts for given 3D geometries. Our approach progressively generates textures that are consistent across multiple viewpoints with a depth-aware inpainting diffusion model, in an optimized sequence of viewpoints determined by an automatic view selection algorithm. A significant feature of our method is its remarkable efficiency, achieving a full texture generation within an end-to-end runtime of just 3.07 seconds on a single NVIDIA H100 GPU, significantly outperforming existing methods. Such an acceleration is achieved by optimizations in the diffusion model and a specialized backprojection method. Moreover, our method reduces the artifacts in the backprojection phase, by selectively masking out non-frontal faces, and internal faces of open-surfaced objects. Experimental results demonstrate that Make-A-Texture matches or exceeds the quality of other state-of-the-art methods. Our work significantly improves the applicability and practicality of texture generation models for real-world 3D content creation, including interactive creation and text-guided texture editing. 8 authors · Dec 10, 2024
7 RoPECraft: Training-Free Motion Transfer with Trajectory-Guided RoPE Optimization on Diffusion Transformers We propose RoPECraft, a training-free video motion transfer method for diffusion transformers that operates solely by modifying their rotary positional embeddings (RoPE). We first extract dense optical flow from a reference video, and utilize the resulting motion offsets to warp the complex-exponential tensors of RoPE, effectively encoding motion into the generation process. These embeddings are then further optimized during denoising time steps via trajectory alignment between the predicted and target velocities using a flow-matching objective. To keep the output faithful to the text prompt and prevent duplicate generations, we incorporate a regularization term based on the phase components of the reference video's Fourier transform, projecting the phase angles onto a smooth manifold to suppress high-frequency artifacts. Experiments on benchmarks reveal that RoPECraft outperforms all recently published methods, both qualitatively and quantitatively. 4 authors · May 19, 2025 2
8 EchoVideo: Identity-Preserving Human Video Generation by Multimodal Feature Fusion Recent advancements in video generation have significantly impacted various downstream applications, particularly in identity-preserving video generation (IPT2V). However, existing methods struggle with "copy-paste" artifacts and low similarity issues, primarily due to their reliance on low-level facial image information. This dependence can result in rigid facial appearances and artifacts reflecting irrelevant details. To address these challenges, we propose EchoVideo, which employs two key strategies: (1) an Identity Image-Text Fusion Module (IITF) that integrates high-level semantic features from text, capturing clean facial identity representations while discarding occlusions, poses, and lighting variations to avoid the introduction of artifacts; (2) a two-stage training strategy, incorporating a stochastic method in the second phase to randomly utilize shallow facial information. The objective is to balance the enhancements in fidelity provided by shallow features while mitigating excessive reliance on them. This strategy encourages the model to utilize high-level features during training, ultimately fostering a more robust representation of facial identities. EchoVideo effectively preserves facial identities and maintains full-body integrity. Extensive experiments demonstrate that it achieves excellent results in generating high-quality, controllability and fidelity videos. 6 authors · Jan 23, 2025 2