new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 6

OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP

We introduce Low-Shot Open-Set Domain Generalization (LSOSDG), a novel paradigm unifying low-shot learning with open-set domain generalization (ODG). While prompt-based methods using models like CLIP have advanced DG, they falter in low-data regimes (e.g., 1-shot) and lack precision in detecting open-set samples with fine-grained semantics related to training classes. To address these challenges, we propose OSLOPROMPT, an advanced prompt-learning framework for CLIP with two core innovations. First, to manage limited supervision across source domains and improve DG, we introduce a domain-agnostic prompt-learning mechanism that integrates adaptable domain-specific cues and visually guided semantic attributes through a novel cross-attention module, besides being supported by learnable domain- and class-generic visual prompts to enhance cross-modal adaptability. Second, to improve outlier rejection during inference, we classify unfamiliar samples as "unknown" and train specialized prompts with systematically synthesized pseudo-open samples that maintain fine-grained relationships to known classes, generated through a targeted query strategy with off-the-shelf foundation models. This strategy enhances feature learning, enabling our model to detect open samples with varied granularity more effectively. Extensive evaluations across five benchmarks demonstrate that OSLOPROMPT establishes a new state-of-the-art in LSOSDG, significantly outperforming existing methods.

  • 7 authors
·
Mar 20, 2025

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic segmentation involves a combination of joint semantic segmentation and instance segmentation, where image contents are divided into two types: things and stuff. We present Panoptic SegFormer, a general framework for panoptic segmentation with transformers. It contains three innovative components: an efficient deeply-supervised mask decoder, a query decoupling strategy, and an improved post-processing method. We also use Deformable DETR to efficiently process multi-scale features, which is a fast and efficient version of DETR. Specifically, we supervise the attention modules in the mask decoder in a layer-wise manner. This deep supervision strategy lets the attention modules quickly focus on meaningful semantic regions. It improves performance and reduces the number of required training epochs by half compared to Deformable DETR. Our query decoupling strategy decouples the responsibilities of the query set and avoids mutual interference between things and stuff. In addition, our post-processing strategy improves performance without additional costs by jointly considering classification and segmentation qualities to resolve conflicting mask overlaps. Our approach increases the accuracy 6.2\% PQ over the baseline DETR model. Panoptic SegFormer achieves state-of-the-art results on COCO test-dev with 56.2\% PQ. It also shows stronger zero-shot robustness over existing methods. The code is released at https://github.com/zhiqi-li/Panoptic-SegFormer.

  • 8 authors
·
Sep 8, 2021

Flash Sparse Attention: An Alternative Efficient Implementation of Native Sparse Attention Kernel

Recent progress in sparse attention mechanisms has demonstrated strong potential for reducing the computational cost of long-context training and inference in large language models (LLMs). Native Sparse Attention (NSA), a state-of-the-art approach, introduces natively trainable, hardware-aligned sparse attention that delivers substantial system-level performance gains while maintaining accuracy comparable to full attention. However, the kernel implementation of NSA relies on a query-grouping strategy that is efficient only with large Grouped Query Attention (GQA) sizes, whereas modern LLMs typically adopt much smaller GQA groups, which limits the applicability of this sparse algorithmic advance. In this work, we propose Flash Sparse Attention (FSA), which includes an alternative kernel design that enables efficient NSA computation across a wide range of popular LLMs with varied smaller GQA group sizes on modern GPUs. Compared to vanilla NSA kernel implementation, our empirical evaluation demonstrates that FSA achieves (i) up to 3.5times and on average 1.6times kernel-level latency reduction, (ii) up to 1.25times and 1.09times on average end-to-end training speedup on state-of-the-art LLMs, and (iii) up to 1.36times and 1.11times on average end-to-end prefill speedup on state-of-the-art LLMs. The source code is open-sourced and publicly available at https://github.com/Relaxed-System-Lab/Flash-Sparse-Attention.

  • 3 authors
·
Aug 25, 2025

Point-DETR3D: Leveraging Imagery Data with Spatial Point Prior for Weakly Semi-supervised 3D Object Detection

Training high-accuracy 3D detectors necessitates massive labeled 3D annotations with 7 degree-of-freedom, which is laborious and time-consuming. Therefore, the form of point annotations is proposed to offer significant prospects for practical applications in 3D detection, which is not only more accessible and less expensive but also provides strong spatial information for object localization. In this paper, we empirically discover that it is non-trivial to merely adapt Point-DETR to its 3D form, encountering two main bottlenecks: 1) it fails to encode strong 3D prior into the model, and 2) it generates low-quality pseudo labels in distant regions due to the extreme sparsity of LiDAR points. To overcome these challenges, we introduce Point-DETR3D, a teacher-student framework for weakly semi-supervised 3D detection, designed to fully capitalize on point-wise supervision within a constrained instance-wise annotation budget.Different from Point-DETR which encodes 3D positional information solely through a point encoder, we propose an explicit positional query initialization strategy to enhance the positional prior. Considering the low quality of pseudo labels at distant regions produced by the teacher model, we enhance the detector's perception by incorporating dense imagery data through a novel Cross-Modal Deformable RoI Fusion (D-RoI).Moreover, an innovative point-guided self-supervised learning technique is proposed to allow for fully exploiting point priors, even in student models.Extensive experiments on representative nuScenes dataset demonstrate our Point-DETR3D obtains significant improvements compared to previous works. Notably, with only 5% of labeled data, Point-DETR3D achieves over 90% performance of its fully supervised counterpart.

  • 7 authors
·
Mar 22, 2024

Data-Efficient Massive Tool Retrieval: A Reinforcement Learning Approach for Query-Tool Alignment with Language Models

Recent advancements in large language models (LLMs) integrated with external tools and APIs have successfully addressed complex tasks by using in-context learning or fine-tuning. Despite this progress, the vast scale of tool retrieval remains challenging due to stringent input length constraints. In response, we propose a pre-retrieval strategy from an extensive repository, effectively framing the problem as the massive tool retrieval (MTR) task. We introduce the MTRB (massive tool retrieval benchmark) to evaluate real-world tool-augmented LLM scenarios with a large number of tools. This benchmark is designed for low-resource scenarios and includes a diverse collection of tools with descriptions refined for consistency and clarity. It consists of three subsets, each containing 90 test samples and 10 training samples. To handle the low-resource MTR task, we raise a new query-tool alignment (QTA) framework leverages LLMs to enhance query-tool alignment by rewriting user queries through ranking functions and the direct preference optimization (DPO) method. This approach consistently outperforms existing state-of-the-art models in top-5 and top-10 retrieval tasks across the MTRB benchmark, with improvements up to 93.28% based on the metric Sufficiency@k, which measures the adequacy of tool retrieval within the first k results. Furthermore, ablation studies validate the efficacy of our framework, highlighting its capacity to optimize performance even with limited annotated samples. Specifically, our framework achieves up to 78.53% performance improvement in Sufficiency@k with just a single annotated sample. Additionally, QTA exhibits strong cross-dataset generalizability, emphasizing its potential for real-world applications.

  • 7 authors
·
Oct 4, 2024

Intra-Document Cascading: Learning to Select Passages for Neural Document Ranking

An emerging recipe for achieving state-of-the-art effectiveness in neural document re-ranking involves utilizing large pre-trained language models - e.g., BERT - to evaluate all individual passages in the document and then aggregating the outputs by pooling or additional Transformer layers. A major drawback of this approach is high query latency due to the cost of evaluating every passage in the document with BERT. To make matters worse, this high inference cost and latency varies based on the length of the document, with longer documents requiring more time and computation. To address this challenge, we adopt an intra-document cascading strategy, which prunes passages of a candidate document using a less expensive model, called ESM, before running a scoring model that is more expensive and effective, called ETM. We found it best to train ESM (short for Efficient Student Model) via knowledge distillation from the ETM (short for Effective Teacher Model) e.g., BERT. This pruning allows us to only run the ETM model on a smaller set of passages whose size does not vary by document length. Our experiments on the MS MARCO and TREC Deep Learning Track benchmarks suggest that the proposed Intra-Document Cascaded Ranking Model (IDCM) leads to over 400% lower query latency by providing essentially the same effectiveness as the state-of-the-art BERT-based document ranking models.

  • 5 authors
·
May 20, 2021

SQUARE: Semantic Query-Augmented Fusion and Efficient Batch Reranking for Training-free Zero-Shot Composed Image Retrieval

Composed Image Retrieval (CIR) aims to retrieve target images that preserve the visual content of a reference image while incorporating user-specified textual modifications. Training-free zero-shot CIR (ZS-CIR) approaches, which require no task-specific training or labeled data, are highly desirable, yet accurately capturing user intent remains challenging. In this paper, we present SQUARE, a novel two-stage training-free framework that leverages Multimodal Large Language Models (MLLMs) to enhance ZS-CIR. In the Semantic Query-Augmented Fusion (SQAF) stage, we enrich the query embedding derived from a vision-language model (VLM) such as CLIP with MLLM-generated captions of the target image. These captions provide high-level semantic guidance, enabling the query to better capture the user's intent and improve global retrieval quality. In the Efficient Batch Reranking (EBR) stage, top-ranked candidates are presented as an image grid with visual marks to the MLLM, which performs joint visual-semantic reasoning across all candidates. Our reranking strategy operates in a single pass and yields more accurate rankings. Experiments show that SQUARE, with its simplicity and effectiveness, delivers strong performance on four standard CIR benchmarks. Notably, it maintains high performance even with lightweight pre-trained, demonstrating its potential applicability.

  • 3 authors
·
Sep 30, 2025 3

TITAN: Query-Token based Domain Adaptive Adversarial Learning

We focus on the source-free domain adaptive object detection (SF-DAOD) problem when source data is unavailable during adaptation and the model must adapt to an unlabeled target domain. The majority of approaches for the problem employ a self-supervised approach using a student-teacher (ST) framework where pseudo-labels are generated via a source-pretrained model for further fine-tuning. We observe that the performance of a student model often degrades drastically, due to the collapse of the teacher model, primarily caused by high noise in pseudo-labels, resulting from domain bias, discrepancies, and a significant domain shift across domains. To obtain reliable pseudo-labels, we propose a Target-based Iterative Query-Token Adversarial Network (TITAN), which separates the target images into two subsets: those similar to the source (easy) and those dissimilar (hard). We propose a strategy to estimate variance to partition the target domain. This approach leverages the insight that higher detection variances correspond to higher recall and greater similarity to the source domain. Also, we incorporate query-token-based adversarial modules into a student-teacher baseline framework to reduce the domain gaps between two feature representations. Experiments conducted on four natural imaging datasets and two challenging medical datasets have substantiated the superior performance of TITAN compared to existing state-of-the-art (SOTA) methodologies. We report an mAP improvement of +22.7, +22.2, +21.1, and +3.7 percent over the current SOTA on C2F, C2B, S2C, and K2C benchmarks, respectively.

  • 2 authors
·
Jun 26, 2025

PromptDistill: Query-based Selective Token Retention in Intermediate Layers for Efficient Large Language Model Inference

As large language models (LLMs) tackle increasingly complex tasks and longer documents, their computational and memory costs during inference become a major bottleneck. To address this, we propose PromptDistill, a novel, training-free method that improves inference efficiency while preserving generation quality. PromptDistill identifies and retains the most informative tokens by leveraging attention interactions in early layers, preserving their hidden states while reducing the computational burden in later layers. This allows the model to focus on essential contextual information without fully processing all tokens. Unlike previous methods such as H2O and SnapKV, which perform compression only after processing the entire input, or GemFilter, which selects a fixed portion of the initial prompt without considering contextual dependencies, PromptDistill dynamically allocates computational resources to the most relevant tokens while maintaining a global awareness of the input. Experiments using our method and baseline approaches with base models such as LLaMA 3.1 8B Instruct, Phi 3.5 Mini Instruct, and Qwen2 7B Instruct on benchmarks including LongBench, InfBench, and Needle in a Haystack demonstrate that PromptDistill significantly improves efficiency while having minimal impact on output quality compared to the original models. With a single-stage selection strategy, PromptDistill effectively balances performance and efficiency, outperforming prior methods like GemFilter, H2O, and SnapKV due to its superior ability to retain essential information. Specifically, compared to GemFilter, PromptDistill achieves an overall 1% to 5% performance improvement while also offering better time efficiency. Additionally, we explore multi-stage selection, which further improves efficiency while maintaining strong generation performance.

  • 7 authors
·
Mar 29, 2025

Chain-of-Query: Unleashing the Power of LLMs in SQL-Aided Table Understanding via Multi-Agent Collaboration

Table understanding requires structured, multi-step reasoning. Large Language Models (LLMs) struggle with it due to the structural complexity of tabular data. Recently, multi-agent frameworks for SQL generation have shown promise in tackling the challenges of understanding tabular data, but existing approaches often suffer from limitations such as the inability to comprehend table structure for reliable SQL generation, error propagation that results in invalid queries, and over-reliance on execution correctness. To address these issues, we propose Chain-of-Query (CoQ), a novel multi-agent framework for SQL-aided table understanding. CoQ adopts natural-language-style representations of table schemas to abstract away structural noise and enhance understanding. It employs a clause-by-clause SQL generation strategy to improve query quality and introduces a hybrid reasoning division that separates SQL-based mechanical reasoning from LLM-based logical inference, thereby reducing reliance on execution outcomes. Extensive experiments across four models and five widely used benchmarks demonstrate that CoQ achieves substantial accuracy improvements and significantly lowers invalid SQL rates compared to prior generic LLM-based, SQL-aided, and hybrid baselines, confirming its superior effectiveness in table understanding. The code is available at https://github.com/SongyuanSui/ChainofQuery.

  • 7 authors
·
Aug 14, 2025

Query-Kontext: An Unified Multimodal Model for Image Generation and Editing

Unified Multimodal Models (UMMs) have demonstrated remarkable performance in text-to-image generation (T2I) and editing (TI2I), whether instantiated as assembled unified frameworks which couple powerful vision-language model (VLM) with diffusion-based generator, or as naive Unified Multimodal Models with an early fusion of understanding and generation modalities. We contend that in current unified frameworks, the crucial capability of multimodal generative reasoning which encompasses instruction understanding, grounding, and image referring for identity preservation and faithful reconstruction, is intrinsically entangled with high-fidelity synthesis. In this work, we introduce Query-Kontext, a novel approach that bridges the VLM and diffusion model via a multimodal ``kontext'' composed of semantic cues and coarse-grained image conditions encoded from multimodal inputs. This design delegates the complex ability of multimodal generative reasoning to powerful VLM while reserving diffusion model's role for high-quality visual synthesis. To achieve this, we propose a three-stage progressive training strategy. First, we connect the VLM to a lightweight diffusion head via multimodal kontext tokens to unleash the VLM's generative reasoning ability. Second, we scale this head to a large, pre-trained diffusion model to enhance visual detail and realism. Finally, we introduce a low-level image encoder to improve image fidelity and perform instruction tuning on downstream tasks. Furthermore, we build a comprehensive data pipeline integrating real, synthetic, and open-source datasets, covering diverse multimodal reference-to-image scenarios, including image generation, instruction-driven editing, customized generation, and multi-subject composition. Experiments show that our approach matches strong unified baselines and even outperforms task-specific state-of-the-art methods in several cases.

  • 11 authors
·
Sep 30, 2025

StageInteractor: Query-based Object Detector with Cross-stage Interaction

Previous object detectors make predictions based on dense grid points or numerous preset anchors. Most of these detectors are trained with one-to-many label assignment strategies. On the contrary, recent query-based object detectors depend on a sparse set of learnable queries and a series of decoder layers. The one-to-one label assignment is independently applied on each layer for the deep supervision during training. Despite the great success of query-based object detection, however, this one-to-one label assignment strategy demands the detectors to have strong fine-grained discrimination and modeling capacity. To solve the above problems, in this paper, we propose a new query-based object detector with cross-stage interaction, coined as StageInteractor. During the forward propagation, we come up with an efficient way to improve this modeling ability by reusing dynamic operators with lightweight adapters. As for the label assignment, a cross-stage label assigner is applied subsequent to the one-to-one label assignment. With this assigner, the training target class labels are gathered across stages and then reallocated to proper predictions at each decoder layer. On MS COCO benchmark, our model improves the baseline by 2.2 AP, and achieves 44.8 AP with ResNet-50 as backbone, 100 queries and 12 training epochs. With longer training time and 300 queries, StageInteractor achieves 51.1 AP and 52.2 AP with ResNeXt-101-DCN and Swin-S, respectively.

  • 4 authors
·
Apr 11, 2023

Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval

Despite the remarkable progress of Large Language Models (LLMs), their performance in question answering (QA) remains limited by the lack of domain-specific and up-to-date knowledge. Retrieval-Augmented Generation (RAG) addresses this limitation by incorporating external information, often from graph-structured data. However, existing graph-based RAG methods suffer from poor graph quality due to incomplete extraction and insufficient utilization of query information during retrieval. To overcome these limitations, we propose Clue-RAG, a novel approach that introduces (1) a multi-partite graph index incorporates Chunk, knowledge unit, and entity to capture semantic content at multiple levels of granularity, coupled with a hybrid extraction strategy that reduces LLM token usage while still producing accurate and disambiguated knowledge units, and (2) Q-Iter, a query-driven iterative retrieval strategy that enhances relevance through semantic search and constrained graph traversal. Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines, achieving up to 99.33% higher Accuracy and 113.51% higher F1 score while reducing indexing costs by 72.58%. Remarkably, Clue-RAG matches or outperforms baselines even without using an LLM for indexing. These results demonstrate the effectiveness and cost-efficiency of Clue-RAG in advancing graph-based RAG systems.

  • 5 authors
·
Jul 11, 2025

Self-Instructed Derived Prompt Generation Meets In-Context Learning: Unlocking New Potential of Black-Box LLMs

Large language models (LLMs) have shown success in generating high-quality responses. In order to achieve better alignment with LLMs with human preference, various works are proposed based on specific optimization process, which, however, is not suitable to Black-Box LLMs like GPT-4, due to inaccessible parameters. In Black-Box LLMs case, their performance is highly dependent on the quality of the provided prompts. Existing methods to enhance response quality often involve a prompt refinement model, yet these approaches potentially suffer from semantic inconsistencies between the refined and original prompts, and typically overlook the relationship between them. To address these challenges, we introduce a self-instructed in-context learning framework that empowers LLMs to deliver more effective responses by generating reliable derived prompts to construct informative contextual environments. Our approach incorporates a self-instructed reinforcement learning mechanism, enabling direct interaction with the response model during derived prompt generation for better alignment. We then formulate querying as an in-context learning task, using responses from LLMs combined with the derived prompts to establish a contextual demonstration for the original prompt. This strategy ensures alignment with the original query, reduces discrepancies from refined prompts, and maximizes the LLMs' in-context learning capability. Extensive experiments demonstrate that the proposed method not only generates more reliable derived prompts but also significantly enhances LLMs' ability to deliver more effective responses, including Black-Box models such as GPT-4.

  • 5 authors
·
Sep 2, 2024

Unleashing the Potential of Multimodal LLMs for Zero-Shot Spatio-Temporal Video Grounding

Spatio-temporal video grounding (STVG) aims at localizing the spatio-temporal tube of a video, as specified by the input text query. In this paper, we utilize multimodal large language models (MLLMs) to explore a zero-shot solution in STVG. We reveal two key insights about MLLMs: (1) MLLMs tend to dynamically assign special tokens, referred to as grounding tokens, for grounding the text query; and (2) MLLMs often suffer from suboptimal grounding due to the inability to fully integrate the cues in the text query (e.g., attributes, actions) for inference. Based on these insights, we propose a MLLM-based zero-shot framework for STVG, which includes novel decomposed spatio-temporal highlighting (DSTH) and temporal-augmented assembling (TAS) strategies to unleash the reasoning ability of MLLMs. The DSTH strategy first decouples the original query into attribute and action sub-queries for inquiring the existence of the target both spatially and temporally. It then uses a novel logit-guided re-attention (LRA) module to learn latent variables as spatial and temporal prompts, by regularizing token predictions for each sub-query. These prompts highlight attribute and action cues, respectively, directing the model's attention to reliable spatial and temporal related visual regions. In addition, as the spatial grounding by the attribute sub-query should be temporally consistent, we introduce the TAS strategy to assemble the predictions using the original video frames and the temporal-augmented frames as inputs to help improve temporal consistency. We evaluate our method on various MLLMs, and show that it outperforms SOTA methods on three common STVG benchmarks. The code will be available at https://github.com/zaiquanyang/LLaVA_Next_STVG.

  • 4 authors
·
Sep 18, 2025 2

Conformal Information Pursuit for Interactively Guiding Large Language Models

A significant use case of instruction-finetuned Large Language Models (LLMs) is to solve question-answering tasks interactively. In this setting, an LLM agent is tasked with making a prediction by sequentially querying relevant information from the user, as opposed to a single-turn conversation. This paper explores sequential querying strategies that aim to minimize the expected number of queries. One such strategy is Information Pursuit (IP), a greedy algorithm that at each iteration selects the query that maximizes information gain or equivalently minimizes uncertainty. However, obtaining accurate estimates of mutual information or conditional entropy for LLMs is very difficult in practice due to over- or under-confident LLM probabilities, which leads to suboptimal query selection and predictive performance. To better estimate the uncertainty at each iteration, we propose Conformal Information Pursuit (C-IP), an alternative approach to sequential information gain based on conformal prediction sets. More specifically, C-IP leverages a relationship between prediction sets and conditional entropy at each iteration to estimate uncertainty based on the average size of conformal prediction sets. In contrast to conditional entropy, we find that conformal prediction sets are a distribution-free and robust method of measuring uncertainty. Experiments with 20 Questions show that C-IP obtains better predictive performance and shorter query-answer chains compared to previous approaches to IP and uncertainty-based chain-of-thought methods. Furthermore, extending to an interactive medical setting between a doctor and a patient on the MediQ dataset, C-IP achieves competitive performance with direct single-turn prediction while offering greater interpretability.

  • 5 authors
·
Jul 3, 2025

Contrastive Attraction and Contrastive Repulsion for Representation Learning

Contrastive learning (CL) methods effectively learn data representations in a self-supervision manner, where the encoder contrasts each positive sample over multiple negative samples via a one-vs-many softmax cross-entropy loss. By leveraging large amounts of unlabeled image data, recent CL methods have achieved promising results when pretrained on large-scale datasets, such as ImageNet. However, most of them consider the augmented views from the same instance are positive pairs, while views from other instances are negative ones. Such binary partition insufficiently considers the relation between samples and tends to yield worse performance when generalized on images in the wild. In this paper, to further improve the performance of CL and enhance its robustness on various datasets, {we propose a doubly CL strategy that separately compares positive and negative samples within their own groups, and then proceeds with a contrast between positive and negative groups}. We realize this strategy with contrastive attraction and contrastive repulsion (CACR), which makes the query not only exert a greater force to attract more distant positive samples but also do so to repel closer negative samples. Theoretical analysis reveals that CACR generalizes CL's behavior by positive attraction and negative repulsion, and it further considers the intra-contrastive relation within the positive and negative pairs to narrow the gap between the sampled and true distribution, which is important when datasets are less curated. With our extensive experiments, CACR not only demonstrates good performance on CL benchmarks, but also shows better robustness when generalized on imbalanced image datasets. Code and pre-trained checkpoints are available at https://github.com/JegZheng/CACR-SSL.

  • 10 authors
·
May 8, 2021

CondAmbigQA: A Benchmark and Dataset for Conditional Ambiguous Question Answering

Large language models (LLMs) are prone to hallucinations in question-answering (QA) tasks when faced with ambiguous questions. Users often assume that LLMs share their cognitive alignment, a mutual understanding of context, intent, and implicit details, leading them to omit critical information in the queries. However, LLMs generate responses based on assumptions that can misalign with user intent, which may be perceived as hallucinations if they misalign with the user's intent. Therefore, identifying those implicit assumptions is crucial to resolve ambiguities in QA. Prior work, such as AmbigQA, reduces ambiguity in queries via human-annotated clarifications, which is not feasible in real application. Meanwhile, ASQA compiles AmbigQA's short answers into long-form responses but inherits human biases and fails capture explicit logical distinctions that differentiates the answers. We introduce Conditional Ambiguous Question-Answering (CondAmbigQA), a benchmark with 200 ambiguous queries and condition-aware evaluation metrics. Our study pioneers the concept of ``conditions'' in ambiguous QA tasks, where conditions stand for contextual constraints or assumptions that resolve ambiguities. The retrieval-based annotation strategy uses retrieved Wikipedia fragments to identify possible interpretations for a given query as its conditions and annotate the answers through those conditions. Such a strategy minimizes human bias introduced by different knowledge levels among annotators. By fixing retrieval results, CondAmbigQA evaluates how RAG systems leverage conditions to resolve ambiguities. Experiments show that models considering conditions before answering improve performance by 20%, with an additional 5% gain when conditions are explicitly provided. These results underscore the value of conditional reasoning in QA, offering researchers tools to rigorously evaluate ambiguity resolution.

  • 4 authors
·
Feb 3, 2025

Doc2Query++: Topic-Coverage based Document Expansion and its Application to Dense Retrieval via Dual-Index Fusion

Document expansion (DE) via query generation tackles vocabulary mismatch in sparse retrieval, yet faces limitations: uncontrolled generation producing hallucinated or redundant queries with low diversity; poor generalization from in-domain training (e.g., MS MARCO) to out-of-domain data like BEIR; and noise from concatenation harming dense retrieval. While Large Language Models (LLMs) enable cross-domain query generation, basic prompting lacks control, and taxonomy-based methods rely on domain-specific structures, limiting applicability. To address these challenges, we introduce Doc2Query++, a DE framework that structures query generation by first inferring a document's latent topics via unsupervised topic modeling for cross-domain applicability, then using hybrid keyword selection to create a diverse and relevant keyword set per document. This guides LLM not only to leverage keywords, which ensure comprehensive topic representation, but also to reduce redundancy through diverse, relevant terms. To prevent noise from query appending in dense retrieval, we propose Dual-Index Fusion strategy that isolates text and query signals, boosting performance in dense settings. Extensive experiments show Doc2Query++ significantly outperforms state-of-the-art baselines, achieving substantial gains in MAP, nDCG@10 and Recall@100 across diverse datasets on both sparse and dense retrieval.

  • 4 authors
·
Oct 10, 2025

Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity

Retrieval-Augmented Large Language Models (LLMs), which incorporate the non-parametric knowledge from external knowledge bases into LLMs, have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA). However, even though there are various approaches dealing with queries of different complexities, they either handle simple queries with unnecessary computational overhead or fail to adequately address complex multi-step queries; yet, not all user requests fall into only one of the simple or complex categories. In this work, we propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs from the simplest to the most sophisticated ones based on the query complexity. Also, this selection process is operationalized with a classifier, which is a smaller LM trained to predict the complexity level of incoming queries with automatically collected labels, obtained from actual predicted outcomes of models and inherent inductive biases in datasets. This approach offers a balanced strategy, seamlessly adapting between the iterative and single-step retrieval-augmented LLMs, as well as the no-retrieval methods, in response to a range of query complexities. We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems, compared to relevant baselines including the adaptive retrieval approaches. Code is available at: https://github.com/starsuzi/Adaptive-RAG.

  • 5 authors
·
Mar 21, 2024 1

Universal Source Separation with Weakly Labelled Data

Universal source separation (USS) is a fundamental research task for computational auditory scene analysis, which aims to separate mono recordings into individual source tracks. There are three potential challenges awaiting the solution to the audio source separation task. First, previous audio source separation systems mainly focus on separating one or a limited number of specific sources. There is a lack of research on building a unified system that can separate arbitrary sources via a single model. Second, most previous systems require clean source data to train a separator, while clean source data are scarce. Third, there is a lack of USS system that can automatically detect and separate active sound classes in a hierarchical level. To use large-scale weakly labeled/unlabeled audio data for audio source separation, we propose a universal audio source separation framework containing: 1) an audio tagging model trained on weakly labeled data as a query net; and 2) a conditional source separation model that takes query net outputs as conditions to separate arbitrary sound sources. We investigate various query nets, source separation models, and training strategies and propose a hierarchical USS strategy to automatically detect and separate sound classes from the AudioSet ontology. By solely leveraging the weakly labelled AudioSet, our USS system is successful in separating a wide variety of sound classes, including sound event separation, music source separation, and speech enhancement. The USS system achieves an average signal-to-distortion ratio improvement (SDRi) of 5.57 dB over 527 sound classes of AudioSet; 10.57 dB on the DCASE 2018 Task 2 dataset; 8.12 dB on the MUSDB18 dataset; an SDRi of 7.28 dB on the Slakh2100 dataset; and an SSNR of 9.00 dB on the voicebank-demand dataset. We release the source code at https://github.com/bytedance/uss

  • 7 authors
·
May 11, 2023

MiniGPT-3D: Efficiently Aligning 3D Point Clouds with Large Language Models using 2D Priors

Large 2D vision-language models (2D-LLMs) have gained significant attention by bridging Large Language Models (LLMs) with images using a simple projector. Inspired by their success, large 3D point cloud-language models (3D-LLMs) also integrate point clouds into LLMs. However, directly aligning point clouds with LLM requires expensive training costs, typically in hundreds of GPU-hours on A100, which hinders the development of 3D-LLMs. In this paper, we introduce MiniGPT-3D, an efficient and powerful 3D-LLM that achieves multiple SOTA results while training for only 27 hours on one RTX 3090. Specifically, we propose to align 3D point clouds with LLMs using 2D priors from 2D-LLMs, which can leverage the similarity between 2D and 3D visual information. We introduce a novel four-stage training strategy for modality alignment in a cascaded way, and a mixture of query experts module to adaptively aggregate features with high efficiency. Moreover, we utilize parameter-efficient fine-tuning methods LoRA and Norm fine-tuning, resulting in only 47.8M learnable parameters, which is up to 260x fewer than existing methods. Extensive experiments show that MiniGPT-3D achieves SOTA on 3D object classification and captioning tasks, with significantly cheaper training costs. Notably, MiniGPT-3D gains an 8.12 increase on GPT-4 evaluation score for the challenging object captioning task compared to ShapeLLM-13B, while the latter costs 160 total GPU-hours on 8 A800. We are the first to explore the efficient 3D-LLM, offering new insights to the community. Code and weights are available at https://github.com/TangYuan96/MiniGPT-3D.

  • 7 authors
·
May 2, 2024

Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks

Recent work has proposed stateful defense models (SDMs) as a compelling strategy to defend against a black-box attacker who only has query access to the model, as is common for online machine learning platforms. Such stateful defenses aim to defend against black-box attacks by tracking the query history and detecting and rejecting queries that are "similar" and thus preventing black-box attacks from finding useful gradients and making progress towards finding adversarial attacks within a reasonable query budget. Recent SDMs (e.g., Blacklight and PIHA) have shown remarkable success in defending against state-of-the-art black-box attacks. In this paper, we show that SDMs are highly vulnerable to a new class of adaptive black-box attacks. We propose a novel adaptive black-box attack strategy called Oracle-guided Adaptive Rejection Sampling (OARS) that involves two stages: (1) use initial query patterns to infer key properties about an SDM's defense; and, (2) leverage those extracted properties to design subsequent query patterns to evade the SDM's defense while making progress towards finding adversarial inputs. OARS is broadly applicable as an enhancement to existing black-box attacks - we show how to apply the strategy to enhance six common black-box attacks to be more effective against current class of SDMs. For example, OARS-enhanced versions of black-box attacks improved attack success rate against recent stateful defenses from almost 0% to to almost 100% for multiple datasets within reasonable query budgets.

  • 6 authors
·
Mar 10, 2023

Balancing Cost and Effectiveness of Synthetic Data Generation Strategies for LLMs

As large language models (LLMs) are applied to more use cases, creating high quality, task-specific datasets for fine-tuning becomes a bottleneck for model improvement. Using high quality human data has been the most common approach to unlock model performance, but is prohibitively expensive in many scenarios. Several alternative methods have also emerged, such as generating synthetic or hybrid data, but the effectiveness of these approaches remain unclear, especially in resource-constrained scenarios and tasks that are not easily verified. To investigate this, we group various synthetic data generation strategies into three representative categories -- Answer Augmentation, Question Rephrase and New Question -- and study the performance of student LLMs trained under various constraints, namely seed instruction set size and query budget. We demonstrate that these strategies are not equally effective across settings. Notably, the optimal data generation strategy depends strongly on the ratio between the available teacher query budget and the size of the seed instruction set. When this ratio is low, generating new answers to existing questions proves most effective, but as this ratio increases, generating new questions becomes optimal. Across all tasks, we find that choice of augmentation method and other design choices matter substantially more in low to mid data regimes than in high data regimes. We provide a practical framework for selecting the appropriate augmentation method across settings, taking into account additional factors such as the scalability of each method, the importance of verifying synthetic data, and the use of different LLMs for synthetic data generation.

  • 7 authors
·
Sep 29, 2024

AdaptiveLog: An Adaptive Log Analysis Framework with the Collaboration of Large and Small Language Model

Automated log analysis is crucial to ensure high availability and reliability of complex systems. The advent of LLMs in NLP has ushered in a new era of language model-driven automated log analysis, garnering significant interest. Within this field, two primary paradigms based on language models for log analysis have become prominent. Small Language Models (SLMs) follow the pre-train and fine-tune paradigm, focusing on the specific log analysis task through fine-tuning on supervised datasets. On the other hand, LLMs following the in-context learning paradigm, analyze logs by providing a few examples in prompt contexts without updating parameters. Despite their respective strengths, we notice that SLMs are more cost-effective but less powerful, whereas LLMs with large parameters are highly powerful but expensive and inefficient. To trade-off between the performance and inference costs of both models in automated log analysis, this paper introduces an adaptive log analysis framework known as AdaptiveLog, which effectively reduces the costs associated with LLM while ensuring superior results. This framework collaborates an LLM and a small language model, strategically allocating the LLM to tackle complex logs while delegating simpler logs to the SLM. Specifically, to efficiently query the LLM, we propose an adaptive selection strategy based on the uncertainty estimation of the SLM, where the LLM is invoked only when the SLM is uncertain. In addition, to enhance the reasoning ability of the LLM in log analysis tasks, we propose a novel prompt strategy by retrieving similar error-prone cases as the reference, enabling the model to leverage past error experiences and learn solutions from these cases. Extensive experiments demonstrate that AdaptiveLog achieves state-of-the-art results across different tasks, elevating the overall accuracy of log analysis while maintaining cost efficiency.

  • 9 authors
·
Jan 19, 2025

DINO-R1: Incentivizing Reasoning Capability in Vision Foundation Models

The recent explosive interest in the reasoning capabilities of large language models, such as DeepSeek-R1, has demonstrated remarkable success through reinforcement learning-based fine-tuning frameworks, exemplified by methods like Group Relative Policy Optimization (GRPO). However, such reasoning abilities remain underexplored and notably absent in vision foundation models, including representation models like the DINO series. In this work, we propose DINO-R1, the first such attempt to incentivize visual in-context reasoning capabilities of vision foundation models using reinforcement learning. Specifically, DINO-R1 introduces Group Relative Query Optimization (GRQO), a novel reinforcement-style training strategy explicitly designed for query-based representation models, which computes query-level rewards based on group-normalized alignment quality. We also apply KL-regularization to stabilize the objectness distribution to reduce the training instability. This joint optimization enables dense and expressive supervision across queries while mitigating overfitting and distributional drift. Building upon Grounding-DINO, we train a series of DINO-R1 family models that integrate a visual prompt encoder and a visual-guided query selection mechanism. Extensive experiments on COCO, LVIS, and ODinW demonstrate that DINO-R1 significantly outperforms supervised fine-tuning baselines, achieving strong generalization in both open-vocabulary and closed-set visual prompting scenarios.

  • 4 authors
·
May 29, 2025 4

LongHeads: Multi-Head Attention is Secretly a Long Context Processor

Large language models (LLMs) have achieved impressive performance in numerous domains but often struggle to process lengthy inputs effectively and efficiently due to limited length generalization and attention's quadratic computational demands. Many sought to mitigate this by restricting the attention window within the pre-trained length. However, these methods introduce new issues such as ignoring the middle context and requiring additional training. To address these problems, we propose LongHeads, a training-free framework that enhances LLM's long context ability by unlocking multi-head attention's untapped potential. Instead of allowing each head to attend to the full sentence, which struggles with generalizing to longer sequences due to out-of-distribution (OOD) issues, we allow each head to process in-distribution length by selecting and attending to important context chunks. To this end, we propose a chunk selection strategy that relies on the inherent correlation between the query and the key representations, efficiently distributing context chunks to different heads. In this way, each head ensures it can effectively process attended tokens within the trained length, while different heads in different layers can collectively process longer contexts. LongHeads works efficiently in linear time, fits seamlessly with many LLMs that use relative positional encoding. Our extensive empirical analyses verify LongHeads's efficacy in extending the usable context window for existing models, showcasing its promise for enhancing long text understanding.

  • 8 authors
·
Feb 16, 2024 2

Cog-RAG: Cognitive-Inspired Dual-Hypergraph with Theme Alignment Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) enhances the response quality and domain-specific performance of large language models (LLMs) by incorporating external knowledge to combat hallucinations. In recent research, graph structures have been integrated into RAG to enhance the capture of semantic relations between entities. However, it primarily focuses on low-order pairwise entity relations, limiting the high-order associations among multiple entities. Hypergraph-enhanced approaches address this limitation by modeling multi-entity interactions via hyperedges, but they are typically constrained to inter-chunk entity-level representations, overlooking the global thematic organization and alignment across chunks. Drawing inspiration from the top-down cognitive process of human reasoning, we propose a theme-aligned dual-hypergraph RAG framework (Cog-RAG) that uses a theme hypergraph to capture inter-chunk thematic structure and an entity hypergraph to model high-order semantic relations. Furthermore, we design a cognitive-inspired two-stage retrieval strategy that first activates query-relevant thematic content from the theme hypergraph, and then guides fine-grained recall and diffusion in the entity hypergraph, achieving semantic alignment and consistent generation from global themes to local details. Our extensive experiments demonstrate that Cog-RAG significantly outperforms existing state-of-the-art baseline approaches.

  • 8 authors
·
Nov 17, 2025

A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification

Pool-based active learning (AL) aims to optimize the annotation process (i.e., labeling) as the acquisition of annotations is often time-consuming and therefore expensive. For this purpose, an AL strategy queries annotations intelligently from annotators to train a high-performance classification model at a low annotation cost. Traditional AL strategies operate in an idealized framework. They assume a single, omniscient annotator who never gets tired and charges uniformly regardless of query difficulty. However, in real-world applications, we often face human annotators, e.g., crowd or in-house workers, who make annotation mistakes and can be reluctant to respond if tired or faced with complex queries. Recently, a wide range of novel AL strategies has been proposed to address these issues. They differ in at least one of the following three central aspects from traditional AL: (1) They explicitly consider (multiple) human annotators whose performances can be affected by various factors, such as missing expertise. (2) They generalize the interaction with human annotators by considering different query and annotation types, such as asking an annotator for feedback on an inferred classification rule. (3) They take more complex cost schemes regarding annotations and misclassifications into account. This survey provides an overview of these AL strategies and refers to them as real-world AL. Therefore, we introduce a general real-world AL strategy as part of a learning cycle and use its elements, e.g., the query and annotator selection algorithm, to categorize about 60 real-world AL strategies. Finally, we outline possible directions for future research in the field of AL.

  • 4 authors
·
Sep 23, 2021

CLEAR: Conv-Like Linearization Revs Pre-Trained Diffusion Transformers Up

Diffusion Transformers (DiT) have become a leading architecture in image generation. However, the quadratic complexity of attention mechanisms, which are responsible for modeling token-wise relationships, results in significant latency when generating high-resolution images. To address this issue, we aim at a linear attention mechanism in this paper that reduces the complexity of pre-trained DiTs to linear. We begin our exploration with a comprehensive summary of existing efficient attention mechanisms and identify four key factors crucial for successful linearization of pre-trained DiTs: locality, formulation consistency, high-rank attention maps, and feature integrity. Based on these insights, we introduce a convolution-like local attention strategy termed CLEAR, which limits feature interactions to a local window around each query token, and thus achieves linear complexity. Our experiments indicate that, by fine-tuning the attention layer on merely 10K self-generated samples for 10K iterations, we can effectively transfer knowledge from a pre-trained DiT to a student model with linear complexity, yielding results comparable to the teacher model. Simultaneously, it reduces attention computations by 99.5% and accelerates generation by 6.3 times for generating 8K-resolution images. Furthermore, we investigate favorable properties in the distilled attention layers, such as zero-shot generalization cross various models and plugins, and improved support for multi-GPU parallel inference. Models and codes are available here: https://github.com/Huage001/CLEAR.

  • 3 authors
·
Dec 20, 2024 5

xCoT: Cross-lingual Instruction Tuning for Cross-lingual Chain-of-Thought Reasoning

Chain-of-thought (CoT) has emerged as a powerful technique to elicit reasoning in large language models and improve a variety of downstream tasks. CoT mainly demonstrates excellent performance in English, but its usage in low-resource languages is constrained due to poor language generalization. To bridge the gap among different languages, we propose a cross-lingual instruction fine-tuning framework (xCOT) to transfer knowledge from high-resource languages to low-resource languages. Specifically, the multilingual instruction training data (xCOT-INSTRUCT) is created to encourage the semantic alignment of multiple languages. We introduce cross-lingual in-context few-shot learning (xICL)) to accelerate multilingual agreement in instruction tuning, where some fragments of source languages in examples are randomly substituted by their counterpart translations of target languages. During multilingual instruction tuning, we adopt the randomly online CoT strategy to enhance the multilingual reasoning ability of the large language model by first translating the query to another language and then answering in English. To further facilitate the language transfer, we leverage the high-resource CoT to supervise the training of low-resource languages with cross-lingual distillation. Experimental results on previous benchmarks demonstrate the superior performance of xCoT in reducing the gap among different languages, highlighting its potential to reduce the cross-lingual gap.

  • 11 authors
·
Jan 13, 2024

F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search

The proliferation of digital food content has intensified the need for robust and accurate systems capable of fine-grained visual understanding and retrieval. In this work, we address the challenging task of food image-to-text matching, a critical component in applications such as dietary monitoring, smart kitchens, and restaurant automation. We propose F4-ITS: Fine-grained Feature Fusion for Food Image-Text Search, a training-free, vision-language model (VLM)-guided framework that significantly improves retrieval performance through enhanced multi-modal feature representations. Our approach introduces two key contributions: (1) a uni-directional(and bi-directional) multi-modal fusion strategy that combines image embeddings with VLM-generated textual descriptions to improve query expressiveness, and (2) a novel feature-based re-ranking mechanism for top-k retrieval, leveraging predicted food ingredients to refine results and boost precision. Leveraging open-source image-text encoders, we demonstrate substantial gains over standard baselines - achieving ~10% and ~7.7% improvements in top-1 retrieval under dense and sparse caption scenarios, and a ~28.6% gain in top-k ingredient-level retrieval. Additionally, we show that smaller models (e.g., ViT-B/32) can match or outperform larger counterparts (e.g., ViT-H, ViT-G, ViT-bigG) when augmented with textual fusion, highlighting the effectiveness of our method in resource-constrained settings. Code and test datasets will be made publicly available at: https://github.com/mailcorahul/f4-its

  • 1 authors
·
Aug 23, 2025

Step-by-Step Reasoning Attack: Revealing 'Erased' Knowledge in Large Language Models

Knowledge erasure in large language models (LLMs) is important for ensuring compliance with data and AI regulations, safeguarding user privacy, mitigating bias, and misinformation. Existing unlearning methods aim to make the process of knowledge erasure more efficient and effective by removing specific knowledge while preserving overall model performance, especially for retained information. However, it has been observed that the unlearning techniques tend to suppress and leave the knowledge beneath the surface, thus making it retrievable with the right prompts. In this work, we demonstrate that step-by-step reasoning can serve as a backdoor to recover this hidden information. We introduce a step-by-step reasoning-based black-box attack, Sleek, that systematically exposes unlearning failures. We employ a structured attack framework with three core components: (1) an adversarial prompt generation strategy leveraging step-by-step reasoning built from LLM-generated queries, (2) an attack mechanism that successfully recalls erased content, and exposes unfair suppression of knowledge intended for retention and (3) a categorization of prompts as direct, indirect, and implied, to identify which query types most effectively exploit unlearning weaknesses. Through extensive evaluations on four state-of-the-art unlearning techniques and two widely used LLMs, we show that existing approaches fail to ensure reliable knowledge removal. Of the generated adversarial prompts, 62.5% successfully retrieved forgotten Harry Potter facts from WHP-unlearned Llama, while 50% exposed unfair suppression of retained knowledge. Our work highlights the persistent risks of information leakage, emphasizing the need for more robust unlearning strategies for erasure.

  • 5 authors
·
Jun 14, 2025

GenCLIP: Generalizing CLIP Prompts for Zero-shot Anomaly Detection

Zero-shot anomaly detection (ZSAD) aims to identify anomalies in unseen categories by leveraging CLIP's zero-shot capabilities to match text prompts with visual features. A key challenge in ZSAD is learning general prompts stably and utilizing them effectively, while maintaining both generalizability and category specificity. Although general prompts have been explored in prior works, achieving their stable optimization and effective deployment remains a significant challenge. In this work, we propose GenCLIP, a novel framework that learns and leverages general prompts more effectively through multi-layer prompting and dual-branch inference. Multi-layer prompting integrates category-specific visual cues from different CLIP layers, enriching general prompts with more comprehensive and robust feature representations. By combining general prompts with multi-layer visual features, our method further enhances its generalization capability. To balance specificity and generalization, we introduce a dual-branch inference strategy, where a vision-enhanced branch captures fine-grained category-specific features, while a query-only branch prioritizes generalization. The complementary outputs from both branches improve the stability and reliability of anomaly detection across unseen categories. Additionally, we propose an adaptive text prompt filtering mechanism, which removes irrelevant or atypical class names not encountered during CLIP's training, ensuring that only meaningful textual inputs contribute to the final vision-language alignment.

  • 7 authors
·
Apr 21, 2025

Prompt Optimization with Human Feedback

Large language models (LLMs) have demonstrated remarkable performances in various tasks. However, the performance of LLMs heavily depends on the input prompt, which has given rise to a number of recent works on prompt optimization. However, previous works often require the availability of a numeric score to assess the quality of every prompt. Unfortunately, when a human user interacts with a black-box LLM, attaining such a score is often infeasible and unreliable. Instead, it is usually significantly easier and more reliable to obtain preference feedback from a human user, i.e., showing the user the responses generated from a pair of prompts and asking the user which one is preferred. Therefore, in this paper, we study the problem of prompt optimization with human feedback (POHF), in which we aim to optimize the prompt for a black-box LLM using only human preference feedback. Drawing inspiration from dueling bandits, we design a theoretically principled strategy to select a pair of prompts to query for preference feedback in every iteration, and hence introduce our algorithm named automated POHF (APOHF). We apply our APOHF algorithm to various tasks, including optimizing user instructions, prompt optimization for text-to-image generative models, and response optimization with human feedback (i.e., further refining the response using a variant of our APOHF). The results demonstrate that our APOHF can efficiently find a good prompt using a small number of preference feedback instances. Our code can be found at https://github.com/xqlin98/APOHF.

  • 6 authors
·
May 27, 2024

LeCaRDv2: A Large-Scale Chinese Legal Case Retrieval Dataset

As an important component of intelligent legal systems, legal case retrieval plays a critical role in ensuring judicial justice and fairness. However, the development of legal case retrieval technologies in the Chinese legal system is restricted by three problems in existing datasets: limited data size, narrow definitions of legal relevance, and naive candidate pooling strategies used in data sampling. To alleviate these issues, we introduce LeCaRDv2, a large-scale Legal Case Retrieval Dataset (version 2). It consists of 800 queries and 55,192 candidates extracted from 4.3 million criminal case documents. To the best of our knowledge, LeCaRDv2 is one of the largest Chinese legal case retrieval datasets, providing extensive coverage of criminal charges. Additionally, we enrich the existing relevance criteria by considering three key aspects: characterization, penalty, procedure. This comprehensive criteria enriches the dataset and may provides a more holistic perspective. Furthermore, we propose a two-level candidate set pooling strategy that effectively identify potential candidates for each query case. It's important to note that all cases in the dataset have been annotated by multiple legal experts specializing in criminal law. Their expertise ensures the accuracy and reliability of the annotations. We evaluate several state-of-the-art retrieval models at LeCaRDv2, demonstrating that there is still significant room for improvement in legal case retrieval. The details of LeCaRDv2 can be found at the anonymous website https://github.com/anonymous1113243/LeCaRDv2.

  • 6 authors
·
Oct 26, 2023

OneSearch: A Preliminary Exploration of the Unified End-to-End Generative Framework for E-commerce Search

Traditional e-commerce search systems employ multi-stage cascading architectures (MCA) that progressively filter items through recall, pre-ranking, and ranking stages. While effective at balancing computational efficiency with business conversion, these systems suffer from fragmented computation and optimization objective collisions across stages, which ultimately limit their performance ceiling. To address these, we propose OneSearch, the first industrial-deployed end-to-end generative framework for e-commerce search. This framework introduces three key innovations: (1) a Keyword-enhanced Hierarchical Quantization Encoding (KHQE) module, to preserve both hierarchical semantics and distinctive item attributes while maintaining strong query-item relevance constraints; (2) a multi-view user behavior sequence injection strategy that constructs behavior-driven user IDs and incorporates both explicit short-term and implicit long-term sequences to model user preferences comprehensively; and (3) a Preference-Aware Reward System (PARS) featuring multi-stage supervised fine-tuning and adaptive reward-weighted ranking to capture fine-grained user preferences. Extensive offline evaluations on large-scale industry datasets demonstrate OneSearch's superior performance for high-quality recall and ranking. The rigorous online A/B tests confirm its ability to enhance relevance in the same exposure position, achieving statistically significant improvements: +1.67% item CTR, +2.40% buyer, and +3.22% order volume. Furthermore, OneSearch reduces operational expenditure by 75.40% and improves Model FLOPs Utilization from 3.26% to 27.32%. The system has been successfully deployed across multiple search scenarios in Kuaishou, serving millions of users, generating tens of millions of PVs daily.

  • 28 authors
·
Sep 3, 2025

Stable Reinforcement Learning for Efficient Reasoning

The success of Deepseek-R1 has drawn the LLM community's attention to reinforcement learning (RL) methods like GRPO. However, such rule-based 0/1 outcome reward methods lack the capability to regulate the intermediate reasoning processes during chain-of-thought (CoT) generation, leading to severe overthinking phenomena. In response, recent studies have designed reward functions to reinforce models' behaviors in producing shorter yet correct completions. Nevertheless, we observe that these length-penalty reward functions exacerbate RL training instability: as the completion length decreases, model accuracy abruptly collapses, often occurring early in training. To address this issue, we propose a simple yet effective solution GRPO-lambda, an efficient and stabilized variant of GRPO, which dynamically adjusts the reward strategy by monitoring the correctness ratio among completions within each query-sampled group. A low correctness ratio indicates the need to avoid length penalty that compromises CoT quality, triggering a switch to length-agnostic 0/1 rewards that prioritize reasoning capability. A high ratio maintains length penalties to boost efficiency. Experimental results show that our approach avoids training instability caused by length penalty while maintaining the optimal accuracy-efficiency trade-off. On the GSM8K, GPQA, MATH-500, AMC 2023, and AIME 2024 benchmarks, it improves average accuracy by 1.48% while reducing CoT sequence length by 47.3%.

  • 3 authors
·
May 23, 2025

CrackSQL: A Hybrid SQL Dialect Translation System Powered by Large Language Models

Dialect translation plays a key role in enabling seamless interaction across heterogeneous database systems. However, translating SQL queries between different dialects (e.g., from PostgreSQL to MySQL) remains a challenging task due to syntactic discrepancies and subtle semantic variations. Existing approaches including manual rewriting, rule-based systems, and large language model (LLM)-based techniques often involve high maintenance effort (e.g., crafting custom translation rules) or produce unreliable results (e.g., LLM generates non-existent functions), especially when handling complex queries. In this demonstration, we present CrackSQL, the first hybrid SQL dialect translation system that combines rule and LLM-based methods to overcome these limitations. CrackSQL leverages the adaptability of LLMs to minimize manual intervention, while enhancing translation accuracy by segmenting lengthy complex SQL via functionality-based query processing. To further improve robustness, it incorporates a novel cross-dialect syntax embedding model for precise syntax alignment, as well as an adaptive local-to-global translation strategy that effectively resolves interdependent query operations. CrackSQL supports three translation modes and offers multiple deployment and access options including a web console interface, a PyPI package, and a command-line prompt, facilitating adoption across a variety of real-world use cases

  • 4 authors
·
Apr 1, 2025

ESTextSpotter: Towards Better Scene Text Spotting with Explicit Synergy in Transformer

In recent years, end-to-end scene text spotting approaches are evolving to the Transformer-based framework. While previous studies have shown the crucial importance of the intrinsic synergy between text detection and recognition, recent advances in Transformer-based methods usually adopt an implicit synergy strategy with shared query, which can not fully realize the potential of these two interactive tasks. In this paper, we argue that the explicit synergy considering distinct characteristics of text detection and recognition can significantly improve the performance text spotting. To this end, we introduce a new model named Explicit Synergy-based Text Spotting Transformer framework (ESTextSpotter), which achieves explicit synergy by modeling discriminative and interactive features for text detection and recognition within a single decoder. Specifically, we decompose the conventional shared query into task-aware queries for text polygon and content, respectively. Through the decoder with the proposed vision-language communication module, the queries interact with each other in an explicit manner while preserving discriminative patterns of text detection and recognition, thus improving performance significantly. Additionally, we propose a task-aware query initialization scheme to ensure stable training. Experimental results demonstrate that our model significantly outperforms previous state-of-the-art methods. Code is available at https://github.com/mxin262/ESTextSpotter.

  • 8 authors
·
Aug 19, 2023

DATE: Dynamic Absolute Time Enhancement for Long Video Understanding

Long video understanding remains a fundamental challenge for multimodal large language models (MLLMs), particularly in tasks requiring precise temporal reasoning and event localization. Existing approaches typically adopt uniform frame sampling and rely on implicit position encodings to model temporal order. However, these methods struggle with long-range dependencies, leading to critical information loss and degraded temporal comprehension. In this paper, we propose Dynamic Absolute Time Enhancement (DATE) that enhances temporal awareness in MLLMs through the Timestamp Injection Mechanism (TIM) and a semantically guided Temporal-Aware Similarity Sampling (TASS) strategy. Specifically, we interleave video frame embeddings with textual timestamp tokens to construct a continuous temporal reference system. We further reformulate the video sampling problem as a vision-language retrieval task and introduce a two-stage algorithm to ensure both semantic relevance and temporal coverage: enriching each query into a descriptive caption to better align with the vision feature, and sampling key event with a similarity-driven temporally regularized greedy strategy. Our method achieves remarkable improvements w.r.t. absolute time understanding and key event localization, resulting in state-of-the-art performance among 7B and 72B models on hour-long video benchmarks. Particularly, our 7B model even exceeds many 72B models on some benchmarks.

  • 4 authors
·
Sep 11, 2025

ZeroGR: A Generalizable and Scalable Framework for Zero-Shot Generative Retrieval

Generative retrieval (GR) reformulates information retrieval (IR) by framing it as the generation of document identifiers (docids), thereby enabling an end-to-end optimization and seamless integration with generative language models (LMs). Despite notable progress under supervised training, GR still struggles to generalize to zero-shot IR scenarios, which are prevalent in real-world applications. To tackle this challenge, we propose ZeroGR, a zero-shot generative retrieval framework that leverages natural language instructions to extend GR across a wide range of IR tasks. Specifically, ZeroGR is composed of three key components: (i) an LM-based docid generator that unifies heterogeneous documents (e.g., text, tables, code) into semantically meaningful docids; (ii) an instruction-tuned query generator that generates diverse types of queries from natural language task descriptions to enhance corpus indexing; and (iii) a reverse annealing decoding strategy to balance precision and recall during docid generation. We investigate the impact of instruction fine-tuning scale and find that performance consistently improves as the number of IR tasks encountered during training increases. Empirical results on the BEIR and MAIR benchmarks demonstrate that ZeroGR outperforms strong dense retrieval and generative baselines in zero-shot settings, establishing a new state-of-the-art for instruction-driven GR.

  • 8 authors
·
Oct 11, 2025

CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity

Retrieval-Augmented Generation (RAG) aims to enhance large language models (LLMs) to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources, thereby reducing the incidence of hallucinations. Despite the advancements, evaluating these systems remains a crucial research area due to the following issues: (1) Limited data diversity: The insufficient diversity of knowledge sources and query types constrains the applicability of RAG systems; (2) Obscure problems location: Existing evaluation methods have difficulty in locating the stage of the RAG pipeline where problems occur; (3) Unstable retrieval evaluation: These methods often fail to effectively assess retrieval performance, particularly when the chunking strategy changes. To tackle these challenges, we propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline, including chunking, retrieval, reranking, and generation. To effectively evaluate the first three phases, we introduce multi-granularity keywords, including coarse-grained and fine-grained keywords, to assess the retrieved context instead of relying on the annotation of golden chunks. Moreover, we release a holistic benchmark dataset tailored for diverse data scenarios covering a wide range of document formats and query types. We demonstrate the utility of the CoFE-RAG framework by conducting experiments to evaluate each stage of RAG systems. Our evaluation method provides unique insights into the effectiveness of RAG systems in handling diverse data scenarios, offering a more nuanced understanding of their capabilities and limitations.

  • 5 authors
·
Oct 16, 2024

RoRA-VLM: Robust Retrieval-Augmented Vision Language Models

Current vision-language models (VLMs) still exhibit inferior performance on knowledge-intensive tasks, primarily due to the challenge of accurately encoding all the associations between visual objects and scenes to their corresponding entities and background knowledge. While retrieval augmentation methods offer an efficient way to integrate external knowledge, extending them to vision-language domain presents unique challenges in (1) precisely retrieving relevant information from external sources due to the inherent discrepancy within the multimodal queries, and (2) being resilient to the irrelevant, extraneous and noisy information contained in the retrieved multimodal knowledge snippets. In this work, we introduce RORA-VLM, a novel and robust retrieval augmentation framework specifically tailored for VLMs, with two key innovations: (1) a 2-stage retrieval process with image-anchored textual-query expansion to synergistically combine the visual and textual information in the query and retrieve the most relevant multimodal knowledge snippets; and (2) a robust retrieval augmentation method that strengthens the resilience of VLMs against irrelevant information in the retrieved multimodal knowledge by injecting adversarial noises into the retrieval-augmented training process, and filters out extraneous visual information, such as unrelated entities presented in images, via a query-oriented visual token refinement strategy. We conduct extensive experiments to validate the effectiveness and robustness of our proposed methods on three widely adopted benchmark datasets. Our results demonstrate that with a minimal amount of training instance, RORA-VLM enables the base model to achieve significant performance improvement and constantly outperform state-of-the-art retrieval-augmented VLMs on all benchmarks while also exhibiting a novel zero-shot domain transfer capability.

  • 8 authors
·
Oct 11, 2024

ShowUI: One Vision-Language-Action Model for GUI Visual Agent

Building Graphical User Interface (GUI) assistants holds significant promise for enhancing human workflow productivity. While most agents are language-based, relying on closed-source API with text-rich meta-information (e.g., HTML or accessibility tree), they show limitations in perceiving UI visuals as humans do, highlighting the need for GUI visual agents. In this work, we develop a vision-language-action model in digital world, namely ShowUI, which features the following innovations: (i) UI-Guided Visual Token Selection to reduce computational costs by formulating screenshots as an UI connected graph, adaptively identifying their redundant relationship and serve as the criteria for token selection during self-attention blocks; (ii) Interleaved Vision-Language-Action Streaming that flexibly unifies diverse needs within GUI tasks, enabling effective management of visual-action history in navigation or pairing multi-turn query-action sequences per screenshot to enhance training efficiency; (iii) Small-scale High-quality GUI Instruction-following Datasets by careful data curation and employing a resampling strategy to address significant data type imbalances. With above components, ShowUI, a lightweight 2B model using 256K data, achieves a strong 75.1% accuracy in zero-shot screenshot grounding. Its UI-guided token selection further reduces 33% of redundant visual tokens during training and speeds up the performance by 1.4x. Navigation experiments across web Mind2Web, mobile AITW, and online MiniWob environments further underscore the effectiveness and potential of our model in advancing GUI visual agents. The models are available at https://github.com/showlab/ShowUI.

  • 9 authors
·
Nov 26, 2024 3

A Survey of Active Learning for Text Classification using Deep Neural Networks

Natural language processing (NLP) and neural networks (NNs) have both undergone significant changes in recent years. For active learning (AL) purposes, NNs are, however, less commonly used -- despite their current popularity. By using the superior text classification performance of NNs for AL, we can either increase a model's performance using the same amount of data or reduce the data and therefore the required annotation efforts while keeping the same performance. We review AL for text classification using deep neural networks (DNNs) and elaborate on two main causes which used to hinder the adoption: (a) the inability of NNs to provide reliable uncertainty estimates, on which the most commonly used query strategies rely, and (b) the challenge of training DNNs on small data. To investigate the former, we construct a taxonomy of query strategies, which distinguishes between data-based, model-based, and prediction-based instance selection, and investigate the prevalence of these classes in recent research. Moreover, we review recent NN-based advances in NLP like word embeddings or language models in the context of (D)NNs, survey the current state-of-the-art at the intersection of AL, text classification, and DNNs and relate recent advances in NLP to AL. Finally, we analyze recent work in AL for text classification, connect the respective query strategies to the taxonomy, and outline commonalities and shortcomings. As a result, we highlight gaps in current research and present open research questions.

  • 2 authors
·
Aug 17, 2020

AstronomicAL: An interactive dashboard for visualisation, integration and classification of data using Active Learning

AstronomicAL is a human-in-the-loop interactive labelling and training dashboard that allows users to create reliable datasets and robust classifiers using active learning. This technique prioritises data that offer high information gain, leading to improved performance using substantially less data. The system allows users to visualise and integrate data from different sources and deal with incorrect or missing labels and imbalanced class sizes. AstronomicAL enables experts to visualise domain-specific plots and key information relating both to broader context and details of a point of interest drawn from a variety of data sources, ensuring reliable labels. In addition, AstronomicAL provides functionality to explore all aspects of the training process, including custom models and query strategies. This makes the software a tool for experimenting with both domain-specific classifications and more general-purpose machine learning strategies. We illustrate using the system with an astronomical dataset due to the field's immediate need; however, AstronomicAL has been designed for datasets from any discipline. Finally, by exporting a simple configuration file, entire layouts, models, and assigned labels can be shared with the community. This allows for complete transparency and ensures that the process of reproducing results is effortless

  • 4 authors
·
Sep 11, 2021