2 All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra For any given dimension d, all reflexive d-polytopes can be found (in principle) as subpolytopes of a number of maximal polyhedra that are defined in terms of (d+1)-tuples of integers (weights), or combinations of k-tuples of weights with k<d+1. We present the results of a complete classification of sextuples of weights pertaining to the construction of all reflexive polytopes in five dimensions. We find 322 383 760 930 such weight systems. 185 269 499 015 of them give rise directly to reflexive polytopes and thereby to mirror pairs of Calabi-Yau fourfolds. These lead to 532 600 483 distinct sets of Hodge numbers. 2 authors · Aug 7, 2018
1 Order Theory in the Context of Machine Learning The paper ``Tropical Geometry of Deep Neural Networks'' by L. Zhang et al. introduces an equivalence between integer-valued neural networks (IVNN) with ReLU_{t} and tropical rational functions, which come with a map to polytopes. Here, IVNN refers to a network with integer weights but real biases, and ReLU_{t} is defined as ReLU_{t}(x)=max(x,t) for tinRcup{-infty}. For every poset with n points, there exists a corresponding order polytope, i.e., a convex polytope in the unit cube [0,1]^n whose coordinates obey the inequalities of the poset. We study neural networks whose associated polytope is an order polytope. We then explain how posets with four points induce neural networks that can be interpreted as 2times 2 convolutional filters. These poset filters can be added to any neural network, not only IVNN. Similarly to maxout, poset pooling filters update the weights of the neural network during backpropagation with more precision than average pooling, max pooling, or mixed pooling, without the need to train extra parameters. We report experiments that support our statements. We also define the structure of algebra over the operad of posets on poset neural networks and tropical polynomials. This formalism allows us to study the composition of poset neural network arquitectures and the effect on their corresponding Newton polytopes, via the introduction of the generalization of two operations on polytopes: the Minkowski sum and the convex envelope. 5 authors · Dec 8, 2024
- Complements of finite unions of convex sets Finite unions of convex sets are a central object of study in discrete and computational geometry. In this paper we initiate a systematic study of complements of such unions -- i.e., sets of the form S=R^d setminus (cup_{i=1}^n K_i), where K_i are convex sets. In the first part of the paper we study isolated points in S, whose number is related to the Betti numbers of cup_{i=1}^n K_i and to its non-convexity properties. We obtain upper bounds on the number of such points, which are sharp for n=3 and significantly improve previous bounds of Lawrence and Morris (2009) for all n ll 2^d{d}. In the second part of the paper we study coverings of S by well-behaved sets. We show that S can be covered by at most g(d,n) flats of different dimensions, in such a way that each x in S is covered by a flat whose dimension equals the `local dimension' of S in the neighborhood of x. Furthermore, we determine the structure of a minimum cover that satisfies this property. Then, we study quantitative aspects of this minimum cover and obtain sharp upper bounds on its size in various settings. 2 authors · Aug 26, 2025
- Faces of highest weight modules and the universal Weyl polyhedron Let V be a highest weight module over a Kac-Moody algebra g, and let conv V denote the convex hull of its weights. We determine the combinatorial isomorphism type of conv V, i.e. we completely classify the faces and their inclusions. In the special case where g is semisimple, this brings closure to a question studied by Cellini-Marietti [IMRN 2015] for the adjoint representation, and by Khare [J. Algebra 2016; Trans. Amer. Math. Soc. 2017] for most modules. The determination of faces of finite-dimensional modules up to the Weyl group action and some of their inclusions also appears in previous work of Satake [Ann. of Math. 1960], Borel-Tits [IHES Publ. Math. 1965], Vinberg [Izv. Akad. Nauk 1990], and Casselman [Austral. Math. Soc. 1997]. For any subset of the simple roots, we introduce a remarkable convex cone which we call the universal Weyl polyhedron, which controls the convex hulls of all modules parabolically induced from the corresponding Levi factor. Namely, the combinatorial isomorphism type of the cone stores the classification of faces for all such highest weight modules, as well as how faces degenerate as the highest weight gets increasingly singular. To our knowledge, this cone is new in finite and infinite type. We further answer a question of Michel Brion, by showing that the localization of conv V along a face is always the convex hull of the weights of a parabolically induced module. Finally, as we determine the inclusion relations between faces representation-theoretically from the set of weights, without recourse to convexity, we answer a similar question for highest weight modules over symmetrizable quantum groups. 2 authors · Oct 31, 2016
- On a conjecture of Gross, Mansour and Tucker for Δ-matroids Gross, Mansour, and Tucker introduced the partial-duality polynomial of a ribbon graph [Distributions, European J. Combin. 86, 1--20, 2020], the generating function enumerating partial duals by the Euler genus. Chmutov and Vignes-Tourneret wondered if this polynomial and its conjectured properties would hold for general delta-matroids, which are combinatorial abstractions of ribbon graphs. Yan and Jin contributed to this inquiry by identifying a subset of delta-matroids-specifically, even normal binary ones-whose twist polynomials are characterized by a singular term. Building upon this foundation, the current paper expands the scope of the investigation to encompass even non-binary delta-matroids, revealing that none of them have width-changing twists. 1 authors · Apr 21, 2024
- Bimonoidal Structure of Probability Monads We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure, mutually compatible (i.e. a bimonoidal structure). If the underlying monoidal category is cartesian monoidal, a bimonoidal structure is given uniquely by a commutative strength. However, if the underlying monoidal category is not cartesian monoidal, a strength is not enough to guarantee all the desired properties of joints and marginals. A bimonoidal structure is then the correct requirement for the more general case. We explain the theory and the operational interpretation, with the help of the graphical calculus for monoidal categories. We give a definition of stochastic independence based on the bimonoidal structure, compatible with the intuition and with other approaches in the literature for cartesian monoidal categories. We then show as an example that the Kantorovich monad on the category of complete metric spaces is a bimonoidal monad for a non-cartesian monoidal structure. 2 authors · Apr 10, 2018
1 Positive Geometries and Canonical Forms Recent years have seen a surprising connection between the physics of scattering amplitudes and a class of mathematical objects--the positive Grassmannian, positive loop Grassmannians, tree and loop Amplituhedra--which have been loosely referred to as "positive geometries". The connection between the geometry and physics is provided by a unique differential form canonically determined by the property of having logarithmic singularities (only) on all the boundaries of the space, with residues on each boundary given by the canonical form on that boundary. In this paper we initiate an exploration of "positive geometries" and "canonical forms" as objects of study in their own right in a more general mathematical setting. We give a precise definition of positive geometries and canonical forms, introduce general methods for finding forms for more complicated positive geometries from simpler ones, and present numerous examples of positive geometries in projective spaces, Grassmannians, and toric, cluster and flag varieties. We also illustrate a number of strategies for computing canonical forms which yield interesting representations for the forms associated with wide classes of positive geometries, ranging from the simplest Amplituhedra to new expressions for the volume of arbitrary convex polytopes. 3 authors · Mar 13, 2017
- Learners' Languages In "Backprop as functor", the authors show that the fundamental elements of deep learning -- gradient descent and backpropagation -- can be conceptualized as a strong monoidal functor Para(Euc)toLearn from the category of parameterized Euclidean spaces to that of learners, a category developed explicitly to capture parameter update and backpropagation. It was soon realized that there is an isomorphism LearncongPara(Slens), where Slens is the symmetric monoidal category of simple lenses as used in functional programming. In this note, we observe that Slens is a full subcategory of Poly, the category of polynomial functors in one variable, via the functor Amapsto Ay^A. Using the fact that (Poly,otimes) is monoidal closed, we show that a map Ato B in Para(Slens) has a natural interpretation in terms of dynamical systems (more precisely, generalized Moore machines) whose interface is the internal-hom type [Ay^A,By^B]. Finally, we review the fact that the category p-Coalg of dynamical systems on any p in Poly forms a topos, and consider the logical propositions that can be stated in its internal language. We give gradient descent as an example, and we conclude by discussing some directions for future work. 1 authors · Mar 1, 2021
- Toy Models of Superposition Neural networks often pack many unrelated concepts into a single neuron - a puzzling phenomenon known as 'polysemanticity' which makes interpretability much more challenging. This paper provides a toy model where polysemanticity can be fully understood, arising as a result of models storing additional sparse features in "superposition." We demonstrate the existence of a phase change, a surprising connection to the geometry of uniform polytopes, and evidence of a link to adversarial examples. We also discuss potential implications for mechanistic interpretability. 16 authors · Sep 21, 2022
- Polychrony as Chinampas In this paper, we study the flow of signals through linear paths with the nonlinear condition that a node emits a signal when it receives external stimuli or when two incoming signals from other nodes arrive coincidentally with a combined amplitude above a fixed threshold. Sets of such nodes form a polychrony group and can sometimes lead to cascades. In the context of this work, cascades are polychrony groups in which the number of nodes activated as a consequence of other nodes is greater than the number of externally activated nodes. The difference between these two numbers is the so-called profit. Given the initial conditions, we predict the conditions for a vertex to activate at a prescribed time and provide an algorithm to efficiently reconstruct a cascade. We develop a dictionary between polychrony groups and graph theory. We call the graph corresponding to a cascade a chinampa. This link leads to a topological classification of chinampas. We enumerate the chinampas of profits zero and one and the description of a family of chinampas isomorphic to a family of partially ordered sets, which implies that the enumeration problem of this family is equivalent to computing the Stanley-order polynomials of those partially ordered sets. 8 authors · Mar 28, 2021 1
- Planar site percolation on semi-transitive graphs Semi-transitive graphs, defined in hps98 as examples where ``uniform percolation" holds whenever p>p_c, are a large class of graphs more general than quasi-transitive graphs. Let G be a semi-transitive graph with one end which can be properly embedded into the plane with uniformly bounded face degree for finite faces and minimal vertex degree at least 7. We show that p_u^{site}(G) +p_c^{site}(G_*)=1, where G_* denotes the matching graph of G. This fulfils and extends an observation of Sykes and Essam in 1964 (SE64) to semi-transitive graphs. 1 authors · Apr 3, 2023
- Automorphisms and subdivisions of Helly graphs We study Helly graphs of finite combinatorial dimension, i.e. whose injective hull is finite-dimensional. We describe very simple fine simplicial subdivisions of the injective hull of a Helly graph, following work of Lang. We also give a very explicit simplicial model of the injective hull of a Helly graphs, in terms of cliques which are intersections of balls. We use these subdivisions to prove that any automorphism of a Helly graph with finite combinatorial dimension is either elliptic or hyperbolic. Moreover, every such hyperbolic automorphism has an axis in an appropriate Helly subdivision, and its translation length is rational with uniformly bounded denominator. 1 authors · Jul 1, 2023
- Stable rationality of hypersurfaces in schön affine varieties In recent years, there has been a development in approaching rationality problems through the motivic methods (cf. [Kontsevich--Tschinkel'19], [Nicaise--Shinder'19], [Nicaise--Ottem'21]). This method requires the explicit construction of degeneration families of curves with favorable properties. While the specific construction is generally difficult, [Nicaise--Ottem'22] combines combinatorial methods to construct degeneration families of hypersurfaces in toric varieties and shows the non-stable rationality of a very general hypersurface in projective spaces. In this paper, we extend the result of [Nicaise--Ottem'22] not only for hypersurfaces in algebraic tori but also to those in sch\"{o}n affine varieties. In application, we show the irrationality of certain hypersurfaces in the complex Grassmannian variety Gr(2, n) using the motivic method, which coincides with the result obtained by the same author in the previous research. 1 authors · Feb 12, 2025
- Einstein metrics on aligned homogeneous spaces with two factors Given two homogeneous spaces of the form G_1/K and G_2/K, where G_1 and G_2 are compact simple Lie groups, we study the existence problem for G_1xG_2-invariant Einstein metrics on the homogeneous space M=G_1xG_2/K. For the large subclass C of spaces having three pairwise inequivalent isotropy irreducible summands (12 infinite families and 70 sporadic examples), we obtain that existence is equivalent to the existence of a real root for certain quartic polynomial depending on the dimensions and two Killing constants, which allows a full classification and the possibility to weigh the existence and non-existence pieces of C. 2 authors · Aug 1, 2024
- On cusp holonomies in strictly convex projective geometry We give a complete characterization of the holonomies of strictly convex cusps and of round cusps in convex projective geometry. We build families of generalized cusps of non-maximal rank associated to each strictly convex or round cusp. We also extend Ballas-Cooper-Leitner's definition of generalized cusp to allow for virtually solvable fundamental group, and we produce the first such example with non-virtually nilpotent fundamental group. Along with a companion paper, this allows to build strictly convex cusps and generalized cusps whose fundamental group is any finitely generated virtually nilpotent group. This also has interesting consequences for the theory of relatively Anosov representations. 1 authors · Nov 28, 2025
- Abstract independence relations in neostability theory We develop a framework, in the style of Adler, for interpreting the notion of "witnessing" that has appeared (usually as a variant of Kim's Lemma) in different areas of neostability theory as a binary relation between abstract independence relations. This involves extending the relativisations of Kim-independence and Conant-independence due to Mutchnik to arbitrary independence relations. After developing this framework, we show that several results from simplicity, NTP_2, NSOP_1, and beyond follow as instances of general theorems for abstract independence relations. In particular, we prove the equivalence between witnessing and symmetry and the implications from this notion to chain local character and the weak independence theorem, and recover some partial converses. Finally, we use this framework to prove a dichotomy between NSOP_1 and Kruckman and Ramsey's BTP that applies to most known NSOP_4 examples in the literature. 1 authors · Nov 10, 2025
- Construction of simplicial complexes with prescribed degree-size sequences We study the realizability of simplicial complexes with a given pair of integer sequences, representing the node degree distribution and the facet size distribution, respectively. While the s-uniform variant of the problem is NP-complete when s geq 3, we identify two populations of input sequences, most of which can be solved in polynomial time using a recursive algorithm that we contribute. Combining with a sampler for the simplicial configuration model [J.-G. Young et al., Phys. Rev. E 96, 032312 (2017)], we facilitate the efficient sampling of simplicial ensembles from arbitrary degree and size distributions. We find that, contrary to expectations based on dyadic networks, increasing the nodes' degrees reduces the number of loops in simplicial complexes. Our work unveils a fundamental constraint on the degree-size sequences and sheds light on further analysis of higher-order phenomena based on local structures. 1 authors · May 31, 2021
- An Approximation Algorithm for Monotone Submodular Cost Allocation In this paper, we consider the minimum submodular cost allocation (MSCA) problem. The input of MSCA is k non-negative submodular functions f_1,ldots,f_k on the ground set N given by evaluation oracles, and the goal is to partition N into k (possibly empty) sets X_1,ldots,X_k so that sum_{i=1}^k f_i(X_i) is minimized. In this paper, we focus on the case when f_1,ldots,f_k are monotone (denoted by Mono-MSCA). We provide a natural LP-relaxation for Mono-MSCA, which is equivalent to the convex program relaxation introduced by Chekuri and Ene. We show that the integrality gap of the LP-relaxation is at most k/2, which yields a k/2-approximation algorithm for Mono-MSCA. We also show that the integrality gap of the LP-relaxation is at least k/2-epsilon for any constant epsilon>0 when k is fixed. 1 authors · Nov 1, 2025
- Treemaps with Bounded Aspect Ratio Treemaps are a popular technique to visualize hierarchical data. The input is a weighted tree tree where the weight of each node is the sum of the weights of its children. A treemap for tree is a hierarchical partition of a rectangle into simply connected regions, usually rectangles. Each region represents a node of tree and its area is proportional to the weight of the corresponding node. An important quality criterion for treemaps is the aspect ratio of its regions. One cannot bound the aspect ratio if the regions are restricted to be rectangles. In contrast, polygonal partitions, that use convex polygons, have bounded aspect ratio. We are the first to obtain convex partitions with optimal aspect ratio O(depth(tree)). However, depth(tree) still depends on the input tree. Hence we introduce a new type of treemaps, namely orthoconvex treemaps, where regions representing leaves are rectangles, L-, and S-shapes, and regions representing internal nodes are orthoconvex polygons. We prove that any input tree, irrespective of the weights of the nodes and the depth of the tree, admits an orthoconvex treemap of constant aspect ratio. We also obtain several specialized results for single-level treemaps, that is, treemaps where the input tree has depth~1. 3 authors · Dec 8, 2010
- A localized approach to generalized Turán problems Generalized Tur\'an problems ask for the maximum number of copies of a graph H in an n-vertex, F-free graph, denoted by ex(n,H,F). We show how to extend the new, localized approach of Bradac, Malec, and Tompkins to generalized Tur\'{a}n problems. We weight the copies of H (typically taking H=K_t), instead of the edges, based on the size of the largest clique, path, or star containing the vertices of the copy of H, and in each case prove a tight upper bound on the sum of the weights. A consequence of our new localized theorems is an asymptotic determination of ex(n,H,K_{1,r}) for every H having at least one dominating vertex and mex(m,H,K_{1,r}) for every H having at least two dominating vertices. 2 authors · Jan 13, 2023
- Product representation of perfect cubes Let F_{k,d}(n) be the maximal size of a set {A}subseteq [n] such that the equation \[a_1a_2\dots a_k=x^d, \; a_1<a_2<\ldots<a_k\] has no solution with a_1,a_2,ldots,a_kA and integer x. Erdos, S\'ark\"ozy and T. S\'os studied F_{k,2}, and gave bounds when k=2,3,4,6 and also in the general case. We study the problem for d=3, and provide bounds for k=2,3,4,6 and 9, furthermore, in the general case, as well. In particular, we refute an 18 years old conjecture of Verstra\"ete. We also introduce another function f_{k,d} closely related to F_{k,d}: While the original problem requires a_1, ldots , a_k to all be distinct, we can relax this and only require that the multiset of the a_i's cannot be partitioned into d-tuples where each d-tuple consists of d copies of the same number. 5 authors · May 20, 2024
- Connecting Permutation Equivariant Neural Networks and Partition Diagrams We show how the Schur-Weyl duality that exists between the partition algebra and the symmetric group results in a stronger theoretical foundation for characterising all of the possible permutation equivariant neural networks whose layers are some tensor power of the permutation representation M_n of the symmetric group S_n. In doing so, we unify two separate bodies of literature, and we correct some of the major results that are now widely quoted by the machine learning community. In particular, we find a basis of matrices for the learnable, linear, permutation equivariant layer functions between such tensor power spaces in the standard basis of M_n by using an elegant graphical representation of a basis of set partitions for the partition algebra and its related vector spaces. Also, we show how we can calculate the number of weights that must appear in these layer functions by looking at certain paths through the McKay quiver for M_n. Finally, we describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries. 1 authors · Dec 16, 2022
- Yet another argument in favour of NP=CoNP This article shows yet another proof of NP=CoNP$. In a previous article, we proved that NP=PSPACE and from it we can conclude that NP=CoNP immediately. The former proof shows how to obtain polynomial and, polynomial in time checkable Dag-like proofs for all purely implicational Minimal logic tautologies. From the fact that Minimal implicational logic is PSPACE-complete we get the proof that NP=PSPACE. This first proof of NP=CoNP uses Hudelmaier linear upper-bound on the height of Sequent Calculus minimal implicational logic proofs. In an addendum to the proof of NP=PSPACE, we observe that we do not need to use Hudelmaier upper-bound since any proof of non-hamiltonicity for any graph is linear upper-bounded. By the CoNP-completeness of non-hamiltonicity, we obtain NP=CoNP as a corollary of the first proof. In this article we show the third proof of CoNP=NP, also providing polynomial size and polynomial verifiable certificates that are Dags. They are generated from normal Natural Deduction proofs, linear height upper-bounded too, by removing redundancy, i.e., repeated parts. The existence of repeated parts is a consequence of the redundancy theorem for a family of super-polynomial proofs in the purely implicational Minimal logic. It is mandatory to read at least two previous articles to get the details of the proof presented here. The article that proves the redundancy theorem and the article that shows how to remove the repeated parts of a normal Natural Deduction proof to have a polynomial Dag certificate for minimal implicational logic tautologies. 1 authors · Dec 28, 2020
- Calabi-Yau fibrations, simple K-equivalence and mutations A homogeneous roof is a rational homogeneous variety of Picard rank 2 and index r equipped with two different mathbb P^{r-1}-bundle structures. We consider bundles of homogeneous roofs over a smooth projective variety, formulating a relative version of the duality of Calabi--Yau pairs associated to roofs of projective bundles. We discuss how derived equivalence of such pairs can lift to Calabi--Yau fibrations, extending a result of Bridgeland and Maciocia to higher-dimensional cases. We formulate an approach to prove that the DK-conjecture holds for a class of simple K-equivalent maps arising from bundles of roofs. As an example, we propose a pair of eight-dimensional Calabi--Yau varieties fibered in dual Calabi--Yau threefolds, related by a GLSM phase transition, and we prove derived equivalence with the methods above. 1 authors · Jun 11, 2020
- On Enumerating Higher Bruhat Orders Through Deletion and Contraction The higher Bruhat orders B(n,k) were introduced by Manin-Schechtman to study discriminantal hyperplane arrangements and subsequently studied by Ziegler, who connected B(n,k) to oriented matroids. In this paper, we consider the enumeration of B(n,k) and improve upon Balko's asymptotic lower and upper bounds on |B(n,k)| by a factor exponential in k. A proof of Ziegler's formula for |B(n,n-3)| is given and a bijection between a certain subset of B(n,n-4) and totally symmetric plane partitions is proved. Central to our proofs are deletion and contraction operations for the higher Bruhat orders, defined in analogy with matroids. Dual higher Bruhat orders are also introduced, and we construct isomorphisms relating the higher Bruhat orders and their duals. Additionally, weaving functions are introduced to generalize Felsner's encoding of elements in B(n,2) to all higher Bruhat orders B(n,k). 1 authors · Dec 13, 2024
- Networks bijective to permutations We study the set of networks, which consist of sources, sinks and neutral points, bijective to the permutations. The set of directed edges, which characterizes a network, is constructed from a polyomino or a Rothe diagram of a permutation through a Dyck tiling on a ribbon. We introduce a new combinatorial object similar to a tree-like tableau, which we call a forest. A forest is shown to give a permutation, and be bijective to a network corresponding to the inverse of the permutation. We show that the poset of networks is a finite graded lattice and admits an EL-labeling. By use of this EL-labeling, we show the lattice is supersolvable and compute the M\"obius function of an interval of the poset. 1 authors · Feb 8, 2024
- The Minkowski Billiard Characterization of the EHZ-capacity of Convex Lagrangian Products We rigorously state the connection between the EHZ-capacity of convex Lagrangian products Ktimes TsubsetR^ntimesR^n and the minimal length of closed (K,T)-Minkowski billiard trajectories. This connection was made explicit for the first time by Artstein-Avidan and Ostrover under the assumption of smoothness and strict convexity of both K and T. We prove this connection in its full generality, i.e., without requiring any conditions on the convex bodies K and T. This prepares the computation of the EHZ-capacity of convex Lagrangian products of two convex polytopes by using discrete computational methods. 1 authors · Mar 3, 2022
- Locally resolvable BIBDs and generalized quadrangles with ovoids In this note we establish a 1-to-1 correspondence between the class of generalized quadrangles with ovoids and the class of balanced incomplete block designs that posses a non-triangular local resolution system and have the appropriate parameters. We present a non-triangular local resolution system for a difference family BIBD construction of Sprott. 1 authors · Aug 1, 2024
1 Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Capturing Research-level Conjecturing Ability in Pure Mathematics With recent dramatic increases in AI system capabilities, there has been growing interest in utilizing machine learning for reasoning-heavy, quantitative tasks, particularly mathematics. While there are many resources capturing mathematics at the high-school, undergraduate, and graduate level, there are far fewer resources available that align with the level of difficulty and open endedness encountered by professional mathematicians working on open problems. To address this, we introduce a new collection of datasets, the Algebraic Combinatorics Dataset Repository (ACD Repo), representing either foundational results or open problems in algebraic combinatorics, a subfield of mathematics that studies discrete structures arising from abstract algebra. Further differentiating our dataset collection is the fact that it aims at the conjecturing process. Each dataset includes an open-ended research-level question and a large collection of examples (up to 10M in some cases) from which conjectures should be generated. We describe all nine datasets, the different ways machine learning models can be applied to them (e.g., training with narrow models followed by interpretability analysis or program synthesis with LLMs), and discuss some of the challenges involved in designing datasets like these. 7 authors · Mar 8, 2025
- Distinguishability and linear independence for H-chromatic symmetric functions We study the H-chromatic symmetric functions X_G^H (introduced in (arXiv:2011.06063) as a generalization of the chromatic symmetric function (CSF) X_G), which track homomorphisms from the graph G to the graph H. We focus first on the case of self-chromatic symmetric functions (self-CSFs) X_G^G, making some progress toward a conjecture from (arXiv:2011.06063) that the self-CSF, like the normal CSF, is always different for different trees. In particular, we show that the self-CSF distinguishes trees from non-trees with just one exception, we check using Sage that it distinguishes all trees on up to 12 vertices, and we show that it determines the number of legs of a spider and the degree sequence of a caterpillar given its spine length. We also show that the self-CSF detects the number of connected components of a forest, again with just one exception. Then we prove some results about the power sum expansions for H-CSFs when H is a complete bipartite graph, in particular proving that the conjecture from (arXiv:2011.06063) about p-monotonicity of ω(X_G^H) for H a star holds as long as H is sufficiently large compared to G. We also show that the self-CSFs of complete multipartite graphs form a basis for the ring Λ of symmetric functions, and we give some construction of bases for the vector space Λ^n of degree n symmetric functions using H-CSFs X_G^H where H is a fixed graph that is not a complete graph, answering a question from (arXiv:2011.06063) about whether such bases exist. However, we show that there generally do not exist such bases with G fixed, even with loops, answering another question from (arXiv:2011.06063). We also define the H-chromatic polynomial as an analogue of the chromatic polynomial, and ask when it is the same for different graphs. 2 authors · Nov 11, 2025
- Fat Polygonal Partitions with Applications to Visualization and Embeddings Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in R^d. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space: we give a rm polylog(Delta)-approximation algorithm for embedding n-point ultrametrics into R^d with minimum distortion, where Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio. 3 authors · Sep 9, 2010
- Volumes of Nullhomotopies in Nilpotent Spaces The Shadowing Principle of Manin has proved a valuable tool for addressing questions of quantitative topology raised by Gromov in the late 1900s. The principle informally provides a way for bounded algebraic maps between differential graded algebras to be translated into nearby genuine maps between their geometric realizations. We extend this principle to finite towers of principal K(G,n) fibrations, and in particular apply this construction to nilpotent spaces. As a specific application of the extended principle, we provide upper bounds on the asymptotic behavior of volumes of nullhomotopies of Lipschitz maps into nilpotent spaces. We further refine these bounds in the case when c = 1 to nearly meet those of the simply connected setting. We similarly refine these bounds in the event the target space is coformal, and demonstrate that the bounds in this setting are nearly sharp. 1 authors · Sep 30, 2025
- CayleyPy Growth: Efficient growth computations and hundreds of new conjectures on Cayley graphs (Brief version) This is the third paper of the CayleyPy project applying artificial intelligence to problems in group theory. We announce the first public release of CayleyPy, an open source Python library for computations with Cayley and Schreier graphs. Compared with systems such as GAP and Sage, CayleyPy handles much larger graphs and performs several orders of magnitude faster. Using CayleyPy we obtained about 200 new conjectures on Cayley and Schreier graphs, focused on diameters and growth. For many Cayley graphs of symmetric groups Sn we observe quasi polynomial diameter formulas: a small set of quadratic or linear polynomials indexed by n mod s. We conjecture that this is a general phenomenon, giving efficient diameter computation despite the problem being NP hard. We propose a refinement of the Babai type conjecture on diameters of Sn: n^2/2 + 4n upper bounds in the undirected case, compared to previous O(n^2) bounds. We also provide explicit generator families, related to involutions in a square with whiskers pattern, conjectured to maximize the diameter; search confirms this for all n up to 15. We further conjecture an answer to a question posed by V M Glushkov in 1968 on directed Cayley graphs generated by a cyclic shift and a transposition. For nilpotent groups we conjecture an improvement of J S Ellenberg's results on upper unitriangular matrices over Z/pZ, showing linear dependence of diameter on p. Moreover. Some conjectures are LLM friendly, naturally stated as sorting problems verifiable by algorithms or Python code. To benchmark path finding we created more than 10 Kaggle datasets. CayleyPy works with arbitrary permutation or matrix groups and includes over 100 predefined generators. Our growth computation code outperforms GAP and Sage up to 1000 times in speed and size. 49 authors · Sep 23, 2025
- Computational Graph Decompositions I: Oriented Berge-Fulkerson Conjecture The Berge-Fulkerson conjecture states that every bridgeless cubic graph can be covered with six perfect matchings such that each edge is covered exactly twice. An equivalent reformulation is that it's possible to find a 6-cycle 4-cover. In this paper we discuss the oriented version (o6c4c) of the latter statement, pose it as a conjecture and prove it for the family of Isaacs flower snarks. Similarly to the case of oriented cycle double cover, we can always construct an orientable surface (possibly with boundary) from an o6c4c solution. If the o6c4c solution itself splits into two (not necessarily oriented) cycle double covers, then it's also possible to build another pair of orientable surfaces (also possibly with boundaries). Finally we show how to build a ribbon graph, and for some special o6c4c cases we show that this ribbon graph corresponds to an oriented 6-cycle double cover. Github: https://github.com/gexahedron/cycle-double-covers 1 authors · Jan 9, 2025
- Approximating the Convex Hull via Metric Space Magnitude Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull. 3 authors · Aug 7, 2019
2 Approximately Optimal Core Shapes for Tensor Decompositions This work studies the combinatorial optimization problem of finding an optimal core tensor shape, also called multilinear rank, for a size-constrained Tucker decomposition. We give an algorithm with provable approximation guarantees for its reconstruction error via connections to higher-order singular values. Specifically, we introduce a novel Tucker packing problem, which we prove is NP-hard, and give a polynomial-time approximation scheme based on a reduction to the 2-dimensional knapsack problem with a matroid constraint. We also generalize our techniques to tree tensor network decompositions. We implement our algorithm using an integer programming solver, and show that its solution quality is competitive with (and sometimes better than) the greedy algorithm that uses the true Tucker decomposition loss at each step, while also running up to 1000x faster. 4 authors · Feb 8, 2023
- Combining relatively hyperbolic groups over a complex of groups Given a complex of groups G(Y) = (G_sigma, psi_a, g_{a,b}) where all G_sigma are relatively hyperbolic, the psi_a are inclusions of full relatively quasiconvex subgroups, and the universal cover X is CAT(0) and delta--hyperbolic, we show pi_1(G(Y)) is relatively hyperbolic. The proof extends the work of Dahmani and Martin by constructing a model for the Bowditch boundary of pi_1(G(Y)). We prove the model is a compact metrizable space on which G acts as a geometrically finite convergence group, and a theorem of Yaman then implies the result. More generally, this model shows how any suitable action of a relatively hyperbolic group on a simply connected cell complex encodes a decomposition of the Bowditch boundary into the boundary of the cell complex and the boundaries of cell stabilizers. We hope this decomposition will be helpful in answering topological questions about Bowditch boundaries. 1 authors · Oct 2, 2025
- Flat matrix models for quantum permutation groups We study the matrix models pi:C(S_N^+)to M_N(C(X)) which are flat, in the sense that the standard generators of C(S_N^+) are mapped to rank 1 projections. Our first result is a generalization of the Pauli matrix construction at N=4, using finite groups and 2-cocycles. Our second result is the construction of a universal representation of C(S_N^+), inspired from the Sinkhorn algorithm, that we conjecture to be inner faithful. 2 authors · Feb 14, 2016
- Categories of Differentiable Polynomial Circuits for Machine Learning Reverse derivative categories (RDCs) have recently been shown to be a suitable semantic framework for studying machine learning algorithms. Whereas emphasis has been put on training methodologies, less attention has been devoted to particular model classes: the concrete categories whose morphisms represent machine learning models. In this paper we study presentations by generators and equations of classes of RDCs. In particular, we propose polynomial circuits as a suitable machine learning model. We give an axiomatisation for these circuits and prove a functional completeness result. Finally, we discuss the use of polynomial circuits over specific semirings to perform machine learning with discrete values. 2 authors · Mar 12, 2022
- Approximately Piecewise E(3) Equivariant Point Networks Integrating a notion of symmetry into point cloud neural networks is a provably effective way to improve their generalization capability. Of particular interest are E(3) equivariant point cloud networks where Euclidean transformations applied to the inputs are preserved in the outputs. Recent efforts aim to extend networks that are E(3) equivariant, to accommodate inputs made of multiple parts, each of which exhibits local E(3) symmetry. In practical settings, however, the partitioning into individually transforming regions is unknown a priori. Errors in the partition prediction would unavoidably map to errors in respecting the true input symmetry. Past works have proposed different ways to predict the partition, which may exhibit uncontrolled errors in their ability to maintain equivariance to the actual partition. To this end, we introduce APEN: a general framework for constructing approximate piecewise-E(3) equivariant point networks. Our primary insight is that functions that are equivariant with respect to a finer partition will also maintain equivariance in relation to the true partition. Leveraging this observation, we propose a design where the equivariance approximation error at each layers can be bounded solely in terms of (i) uncertainty quantification of the partition prediction, and (ii) bounds on the probability of failing to suggest a proper subpartition of the ground truth one. We demonstrate the effectiveness of APEN using two data types exemplifying part-based symmetry: (i) real-world scans of room scenes containing multiple furniture-type objects; and, (ii) human motions, characterized by articulated parts exhibiting rigid movement. Our empirical results demonstrate the advantage of integrating piecewise E(3) symmetry into network design, showing a distinct improvement in generalization compared to prior works for both classification and segmentation tasks. 4 authors · Feb 13, 2024
- Mukai duality via roofs of projective bundles We investigate a construction providing pairs of Calabi-Yau varieties described as zero loci of pushforwards of a hyperplane section on a roof as described by Kanemitsu. We discuss the implications of such construction at the level of Hodge equivalence, derived equivalence and mathbb L-equivalence. For the case of K3 surfaces, we provide alternative interpretations for the Fourier-Mukai duality in the family of K3 surfaces of degree 12 of Mukai. In all these constructions the derived equivalence lifts to an equivalence of matrix factorizations categories. 2 authors · Jan 17, 2020
- Near-Optimal Solutions of Constrained Learning Problems With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks. 3 authors · Mar 18, 2024
- Brauer's Group Equivariant Neural Networks We provide a full characterisation of all of the possible group equivariant neural networks whose layers are some tensor power of R^{n} for three symmetry groups that are missing from the machine learning literature: O(n), the orthogonal group; SO(n), the special orthogonal group; and Sp(n), the symplectic group. In particular, we find a spanning set of matrices for the learnable, linear, equivariant layer functions between such tensor power spaces in the standard basis of R^{n} when the group is O(n) or SO(n), and in the symplectic basis of R^{n} when the group is Sp(n). 1 authors · Dec 16, 2022
- Probability, valuations, hyperspace: Three monads on Top and the support as a morphism We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of closed subsets equipped with the lower Vietoris topology. The second is the monad V of continuous valuations, also known as the extended probabilistic powerdomain. We construct both monads in a unified way in terms of double dualization. This reveals a close analogy between them, and allows us to prove that the operation of taking the support of a continuous valuation is a morphism of monads from V to H. In particular, this implies that every H-algebra (topological complete semilattice) is also a V-algebra. Third, we show that V can be restricted to a submonad of tau-smooth probability measures on Top. By composing these two morphisms of monads, we obtain that taking the support of a tau-smooth probability measure is also a morphism of monads. 3 authors · Oct 8, 2019
- Proving Olympiad Algebraic Inequalities without Human Demonstrations Solving Olympiad-level mathematical problems represents a significant advancement in machine intelligence and automated reasoning. Current machine learning methods, however, struggle to solve Olympiad-level problems beyond Euclidean plane geometry due to a lack of large-scale, high-quality datasets. The challenge is even greater in algebraic systems, which involve infinite reasoning spaces within finite conditions. To address these issues, we propose AIPS, an Algebraic Inequality Proving System capable of autonomously generating complex inequality theorems and effectively solving Olympiad-level inequality problems without requiring human demonstrations. During proof search in a mixed reasoning manner, a value curriculum learning strategy on generated datasets is implemented to improve proving performance, demonstrating strong mathematical intuitions. On a test set of 20 International Mathematical Olympiad-level inequality problems, AIPS successfully solved 10, outperforming state-of-the-art methods. Furthermore, AIPS automatically generated a vast array of non-trivial theorems without human intervention, some of which have been evaluated by professional contestants and deemed to reach the level of the International Mathematical Olympiad. Notably, one theorem was selected as a competition problem in a major city 2024 Mathematical Olympiad. 3 authors · Jun 20, 2024
11 Model-Based and Sample-Efficient AI-Assisted Math Discovery in Sphere Packing Sphere packing, Hilbert's eighteenth problem, asks for the densest arrangement of congruent spheres in n-dimensional Euclidean space. Although relevant to areas such as cryptography, crystallography, and medical imaging, the problem remains unresolved: beyond a few special dimensions, neither optimal packings nor tight upper bounds are known. Even a major breakthrough in dimension n=8, later recognised with a Fields Medal, underscores its difficulty. A leading technique for upper bounds, the three-point method, reduces the problem to solving large, high-precision semidefinite programs (SDPs). Because each candidate SDP may take days to evaluate, standard data-intensive AI approaches are infeasible. We address this challenge by formulating SDP construction as a sequential decision process, the SDP game, in which a policy assembles SDP formulations from a set of admissible components. Using a sample-efficient model-based framework that combines Bayesian optimisation with Monte Carlo Tree Search, we obtain new state-of-the-art upper bounds in dimensions 4-16, showing that model-based search can advance computational progress in longstanding geometric problems. Together, these results demonstrate that sample-efficient, model-based search can make tangible progress on mathematically rigid, evaluation limited problems, pointing towards a complementary direction for AI-assisted discovery beyond large-scale LLM-driven exploration. 6 authors · Dec 4, 2025 2
- Tutte's theorem as an educational formalization project In this work, we present two results: The first result is the formalization of Tutte's theorem in Lean, a key theorem concerning matchings in graph theory. As this formalization is ready to be integrated in Lean's mathlib, it provides a valuable step in the path towards formalizing research-level mathematics in this area. The second result is a framework for doing educational formalization projects. This framework provides a structure to learn to formalize mathematics with minimal teacher input. This framework applies to both traditional academic settings and independent community-driven environments. We demonstrate the framework's use by connecting it to the process of formalizing Tutte's theorem. 1 authors · Apr 25, 2025
- Compatibility of Fundamental Matrices for Complete Viewing Graphs This paper studies the problem of recovering cameras from a set of fundamental matrices. A set of fundamental matrices is said to be compatible if a set of cameras exists for which they are the fundamental matrices. We focus on the complete graph, where fundamental matrices for each pair of cameras are given. Previous work has established necessary and sufficient conditions for compatibility as rank and eigenvalue conditions on the n-view fundamental matrix obtained by concatenating the individual fundamental matrices. In this work, we show that the eigenvalue condition is redundant. We provide explicit homogeneous polynomials that describe necessary and sufficient conditions for compatibility in terms of the fundamental matrices and their epipoles. In this direction, we find that quadruple-wise compatibility is enough to ensure global compatibility for any number of cameras. We demonstrate that for four cameras, compatibility is generically described by triple-wise conditions and one additional equation involving all fundamental matrices. 2 authors · Mar 19, 2023
1 Volume estimates for unions of convex sets, and the Kakeya set conjecture in three dimensions We study sets of delta tubes in R^3, with the property that not too many tubes can be contained inside a common convex set V. We show that the union of tubes from such a set must have almost maximal volume. As a consequence, we prove that every Kakeya set in R^3 has Minkowski and Hausdorff dimension 3. 2 authors · Feb 24, 2025
- On the Orthogonal Projections For any {rm E}-rigid presentation e, we construct an orthogonal projection functor to {rm rep}(e^perp) left adjoint to the natural embedding. We establish a bijection between presentations in {rm rep}(e^perp) and presentations compatible with e. For quivers with potentials, we show that {rm rep}(e^perp) forms a module category of another quiver with potential. We derive mutation formulas for the delta-vectors of positive and negative complements and the dimension vectors of simple modules in {rm rep}(e^perp), enabling an algorithm to find the projected quiver with potential. Additionally, we introduce a modified projection for quivers with potentials that preserves general presentations. For applications to cluster algebras, we establish a connection to the stabilization functors. 1 authors · Oct 1, 2025
- Lenses and Learners Lenses are a well-established structure for modelling bidirectional transformations, such as the interactions between a database and a view of it. Lenses may be symmetric or asymmetric, and may be composed, forming the morphisms of a monoidal category. More recently, the notion of a learner has been proposed: these provide a compositional way of modelling supervised learning algorithms, and again form the morphisms of a monoidal category. In this paper, we show that the two concepts are tightly linked. We show both that there is a faithful, identity-on-objects symmetric monoidal functor embedding a category of asymmetric lenses into the category of learners, and furthermore there is such a functor embedding the category of learners into a category of symmetric lenses. 2 authors · Mar 5, 2019
1 Learning Prescriptive ReLU Networks We study the problem of learning optimal policy from a set of discrete treatment options using observational data. We propose a piecewise linear neural network model that can balance strong prescriptive performance and interpretability, which we refer to as the prescriptive ReLU network, or P-ReLU. We show analytically that this model (i) partitions the input space into disjoint polyhedra, where all instances that belong to the same partition receive the same treatment, and (ii) can be converted into an equivalent prescriptive tree with hyperplane splits for interpretability. We demonstrate the flexibility of the P-ReLU network as constraints can be easily incorporated with minor modifications to the architecture. Through experiments, we validate the superior prescriptive accuracy of P-ReLU against competing benchmarks. Lastly, we present examples of interpretable prescriptive trees extracted from trained P-ReLUs using a real-world dataset, for both the unconstrained and constrained scenarios. 2 authors · Jun 1, 2023
- An analytical framework for the Levine hats problem: new strategies, bounds and generalizations We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies. 5 authors · Aug 3, 2025
2 Tropical Attention: Neural Algorithmic Reasoning for Combinatorial Algorithms Dynamic programming (DP) algorithms for combinatorial optimization problems work with taking maximization, minimization, and classical addition in their recursion algorithms. The associated value functions correspond to convex polyhedra in the max plus semiring. Existing Neural Algorithmic Reasoning models, however, rely on softmax-normalized dot-product attention where the smooth exponential weighting blurs these sharp polyhedral structures and collapses when evaluated on out-of-distribution (OOD) settings. We introduce Tropical attention, a novel attention function that operates natively in the max-plus semiring of tropical geometry. We prove that Tropical attention can approximate tropical circuits of DP-type combinatorial algorithms. We then propose that using Tropical transformers enhances empirical OOD performance in both length generalization and value generalization, on algorithmic reasoning tasks, surpassing softmax baselines while remaining stable under adversarial attacks. We also present adversarial-attack generalization as a third axis for Neural Algorithmic Reasoning benchmarking. Our results demonstrate that Tropical attention restores the sharp, scale-invariant reasoning absent from softmax. 4 authors · May 22, 2025 1
- A Probability Monad as the Colimit of Spaces of Finite Samples We define and study a probability monad on the category of complete metric spaces and short maps. It assigns to each space the space of Radon probability measures on it with finite first moment, equipped with the Kantorovich-Wasserstein distance. This monad is analogous to the Giry monad on the category of Polish spaces, and it extends a construction due to van Breugel for compact and for 1-bounded complete metric spaces. We prove that this Kantorovich monad arises from a colimit construction on finite power-like constructions, which formalizes the intuition that probability measures are limits of finite samples. The proof relies on a criterion for when an ordinary left Kan extension of lax monoidal functors is a monoidal Kan extension. The colimit characterization allows the development of integration theory and the treatment of measures on spaces of measures, without measure theory. We also show that the category of algebras of the Kantorovich monad is equivalent to the category of closed convex subsets of Banach spaces with short affine maps as morphisms. 2 authors · Dec 14, 2017
- Optimal Embeddings of Posets in Hypercubes Given a finite poset mathcal P, the hypercube-height, denoted by h^*(mathcal P), is defined to be the largest h such that, for any natural number n, the subsets of [n] of size less than h do not contain an induced copy of mathcal P. The hypercube-width, denoted by w^*(mathcal P), is the smallest w such that the subsets of [w] of size at most h^*(mathcal P) contain an induced copy of mathcal P. In other words, h^*(mathcal P) asks how `low' can a poset be embedded, and w^*(mathcal P) asks for the first hypercube in which such an `optimal' embedding occurs. These notions were introduced by Bastide, Groenland, Ivan and Johnston in connection to upper bounds for the poset saturation numbers. While it is not hard to see that h^*(mathcal P)leq |mathcal P|-1 (and this bound can be tight), the hypercube-width has proved to be much more elusive. It was shown by the authors mentioned above that w^*(mathcal P)leq|mathcal P|^2/4, but they conjectured that in fact w^*(mathcal P)leq |mathcal P| for any finite poset mathcal P. In this paper we prove this conjecture. The proof uses Hall's theorem for bipartite graphs as a precision tool for modifing an existing copy of our poset. 3 authors · Sep 30, 2025
- Rational Spherical Triangles A rational spherical triangle is a triangle on the unit sphere such that the lengths of its three sides and its area are rational multiples of π. Little and Coxeter have given examples of rational spherical triangles in 1980s. In this work, we are interested in determining all the rational spherical triangles. We introduce a conjecture on the solutions to a trigonometric Diophantine equation. An implication of the conjecture is that the only rational spherical triangles are the ones given by Little and Coxeter. We prove some partial results towards the conjecture. 1 authors · Dec 4, 2023
2 Teaching Transformers Causal Reasoning through Axiomatic Training For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since interventional data is costly to generate, we study to what extent an agent can learn causal reasoning from passive data. Specifically, we consider an axiomatic training setup where an agent learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the agent would learn to generalize from the axiom demonstrations to new scenarios. For example, if a transformer model is trained on demonstrations of the causal transitivity axiom over small graphs, would it generalize to applying the transitivity axiom over large graphs? Our results, based on a novel axiomatic training scheme, indicate that such generalization is possible. We consider the task of inferring whether a variable causes another variable, given a causal graph structure. We find that a 67 million parameter transformer model, when trained on linear causal chains (along with some noisy variations) can generalize well to new kinds of graphs, including longer causal chains, causal chains with reversed order, and graphs with branching; even when it is not explicitly trained for such settings. Our model performs at par (or even better) than many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new paradigm of learning causal reasoning from passive data that can be used to learn arbitrary axioms, as long as sufficient demonstrations can be generated. 5 authors · Jul 10, 2024
- DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks This paper re-examines a continuous optimization framework dubbed NOTEARS for learning Bayesian networks. We first generalize existing algebraic characterizations of acyclicity to a class of matrix polynomials. Next, focusing on a one-parameter-per-edge setting, it is shown that the Karush-Kuhn-Tucker (KKT) optimality conditions for the NOTEARS formulation cannot be satisfied except in a trivial case, which explains a behavior of the associated algorithm. We then derive the KKT conditions for an equivalent reformulation, show that they are indeed necessary, and relate them to explicit constraints that certain edges be absent from the graph. If the score function is convex, these KKT conditions are also sufficient for local minimality despite the non-convexity of the constraint. Informed by the KKT conditions, a local search post-processing algorithm is proposed and shown to substantially and universally improve the structural Hamming distance of all tested algorithms, typically by a factor of 2 or more. Some combinations with local search are both more accurate and more efficient than the original NOTEARS. 3 authors · Oct 18, 2020
- From open learners to open games The categories of open learners (due to Fong, Spivak and Tuy\'eras) and open games (due to the present author, Ghani, Winschel and Zahn) bear a very striking and unexpected similarity. The purpose of this short note is to prove that there is a faithful symmetric monoidal functor from the former to the latter, which means that any supervised neural network (without feedback or other complicating features) can be seen as an open game in a canonical way. Roughly, each parameter is controlled by a different player, and the game's best response relation encodes the dynamics of gradient descent. We suggest paths for further work exploiting the link. 1 authors · Feb 22, 2019
1 Strategy Proof Mechanisms for Facility Location in Euclidean and Manhattan Space We study the impact on mechanisms for facility location of moving from one dimension to two (or more) dimensions and Euclidean or Manhattan distances. We consider three fundamental axiomatic properties: anonymity which is a basic fairness property, Pareto optimality which is one of the most important efficiency properties, and strategy proofness which ensures agents do not have an incentive to mis-report. We also consider how well such mechanisms can approximate the optimal welfare. Our results are somewhat negative. Moving from one dimension to two (or more) dimensions often makes these axiomatic properties more difficult to achieve. For example, with two facilities in Euclidean space or with just a single facility in Manhattan space, no mechanism is anonymous, Pareto optimal and strategy proof. By contrast, mechanisms on the line exist with all three properties.We also show that approximation ratios may increase when moving to two (or more) dimensions. All our impossibility results are minimal. If we drop one of the three axioms (anonymity, Pareto optimality or strategy proofness) multiple mechanisms satisfy the other two axioms. 1 authors · Sep 16, 2020
- A Characterization Theorem for Equivariant Networks with Point-wise Activations Equivariant neural networks have shown improved performance, expressiveness and sample complexity on symmetrical domains. But for some specific symmetries, representations, and choice of coordinates, the most common point-wise activations, such as ReLU, are not equivariant, hence they cannot be employed in the design of equivariant neural networks. The theorem we present in this paper describes all possible combinations of finite-dimensional representations, choice of coordinates and point-wise activations to obtain an exactly equivariant layer, generalizing and strengthening existing characterizations. Notable cases of practical relevance are discussed as corollaries. Indeed, we prove that rotation-equivariant networks can only be invariant, as it happens for any network which is equivariant with respect to connected compact groups. Then, we discuss implications of our findings when applied to important instances of exactly equivariant networks. First, we completely characterize permutation equivariant networks such as Invariant Graph Networks with point-wise nonlinearities and their geometric counterparts, highlighting a plethora of models whose expressive power and performance are still unknown. Second, we show that feature spaces of disentangled steerable convolutional neural networks are trivial representations. 4 authors · Jan 17, 2024
- Generalized Polya's theorem on connected locally compact Abelian groups of dimension 1 According to the generalized Polya theorem, the Gaussian distribution on the real line is characterized by the property of equidistribution of a monomial and a linear form of independent identically distributed random variables. We give a complete description of a-adic solenoids for which an analog of this theorem is true. The proof of the main theorem is reduced to solving some functional equation in the class of continuous positive definite functions on the character group of an a-adic solenoid 1 authors · May 26, 2021
- Infinite products and zero-one laws in categorical probability Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of probability theory in which infinitely many random variables appear at a time. These infinite tensor products bigotimes_{i in J} X_i come in two versions: a weaker but more general one for families of objects (X_i)_{i in J} in semicartesian symmetric monoidal categories, and a stronger but more specific one for families of objects in Markov categories. As a first application, we state and prove versions of the zero-one laws of Kolmogorov and Hewitt-Savage for Markov categories. This gives general versions of these results which can be instantiated not only in measure-theoretic probability, where they specialize to the standard ones in the setting of standard Borel spaces, but also in other contexts. 2 authors · Dec 5, 2019
- Finsler Metric Clustering in Weighted Projective Spaces This paper develops a hierarchical clustering algorithm for weighted projective spaces P_{q}, utilizing a Finsler metric d_F([z], [w]) and its rational analogue d_{F,Q}([z], [w]) to define distances that preserve the non-Euclidean geometry of these quotient manifolds. Defined via geodesic integrals of a scaling invariant Finsler norm weighted by the grades q = (q_0, q_1, dots, q_n), these metrics satisfy true metric properties including the triangle inequality, overcoming the limitations of the non-metric dissimilarity measure from prior work. 1 authors · May 7, 2025
- How Jellyfish Characterise Alternating Group Equivariant Neural Networks We provide a full characterisation of all of the possible alternating group (A_n) equivariant neural networks whose layers are some tensor power of R^{n}. In particular, we find a basis of matrices for the learnable, linear, A_n-equivariant layer functions between such tensor power spaces in the standard basis of R^{n}. We also describe how our approach generalises to the construction of neural networks that are equivariant to local symmetries. 1 authors · Jan 24, 2023
1 Geometry of Sample Spaces In statistics, independent, identically distributed random samples do not carry a natural ordering, and their statistics are typically invariant with respect to permutations of their order. Thus, an n-sample in a space M can be considered as an element of the quotient space of M^n modulo the permutation group. The present paper takes this definition of sample space and the related concept of orbit types as a starting point for developing a geometric perspective on statistics. We aim at deriving a general mathematical setting for studying the behavior of empirical and population means in spaces ranging from smooth Riemannian manifolds to general stratified spaces. We fully describe the orbifold and path-metric structure of the sample space when M is a manifold or path-metric space, respectively. These results are non-trivial even when M is Euclidean. We show that the infinite sample space exists in a Gromov-Hausdorff type sense and coincides with the Wasserstein space of probability distributions on M. We exhibit Fr\'echet means and k-means as metric projections onto 1-skeleta or k-skeleta in Wasserstein space, and we define a new and more general notion of polymeans. This geometric characterization via metric projections applies equally to sample and population means, and we use it to establish asymptotic properties of polymeans such as consistency and asymptotic normality. 4 authors · Oct 15, 2020
1 Barycentric Subspace Analysis on Manifolds This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA). 1 authors · Jul 11, 2016
- Graph Automorphism Group Equivariant Neural Networks For any graph G having n vertices and its automorphism group Aut(G), we provide a full characterisation of all of the possible Aut(G)-equivariant neural networks whose layers are some tensor power of R^{n}. In particular, we find a spanning set of matrices for the learnable, linear, Aut(G)-equivariant layer functions between such tensor power spaces in the standard basis of R^{n}. 1 authors · Jul 15, 2023
- On the generation of periodic discrete structures with identical two-point correlation Strategies for the generation of periodic discrete structures with identical two-point correlation are developed. Starting from a pair of root structures, which are not related by translation, phase inversion or axis reflections, child structures of arbitrary resolution (i.e., pixel or voxel numbers) and number of phases (i.e., material phases/species) can be generated by means of trivial embedding based phase extension, application of kernels and/or phase coalescence, such that the generated structures inherit the two-point-correlation equivalence. Proofs of the inheritance property are provided by means of the Discrete Fourier Transform theory. A Python 3 implementation of the results is offered by the authors through the Github repository https://github.com/DataAnalyticsEngineering/EQ2PC in order to make the provided results reproducible and useful for all interested readers. Examples for the generation of structures are demonstrated, together with applications in the homogenization theory of periodic media. 2 authors · Feb 4, 2020
- DisCoPy: the Hierarchy of Graphical Languages in Python DisCoPy is a Python toolkit for computing with monoidal categories. It comes with two flexible data structures for string diagrams: the first one for planar monoidal categories based on lists of layers, the second one for symmetric monoidal categories based on cospans of hypergraphs. Algorithms for functor application then allow to translate string diagrams into code for numerical computation, be it differentiable, probabilistic or quantum. This report gives an overview of the library and the new developments released in its version 1.0. In particular, we showcase the implementation of diagram equality for a large fragment of the hierarchy of graphical languages for monoidal categories, as well as a new syntax for defining string diagrams as Python functions. 4 authors · Nov 17, 2023
- The Virtual Large Cardinal Hierarchy We continue the study of the virtual large cardinal hierarchy by analysing virtual versions of superstrong, Woodin, and Berkeley cardinals. Gitman and Schindler showed that virtualizations of strong and supercompact cardinals yield the same large cardinal notion. We provide various equivalent characterizations of virtually Woodin cardinals, including showing that On is virtually Woodin if and only if for every class A, there is a proper class of virtually A-extendible cardinals. We introduce the virtual Vopenka principle for finite languages and show that it is not equivalent to the virtual Vopenka principle (although the two principles are equiconsistent), but is equivalent to the assertion that On is virtually pre-Woodin, a weakening of virtually Woodin, which is equivalent to having for every class A, a weakly virtually A-extendible cardinal. We show that if there are no virtually Berkeley cardinals, then On is virtually Woodin if and only if On is virtually pre-Woodin (if and only if the virtual Vopenka principle for finite languages holds). In particular, if the virtual Vopenka principle holds and On is not Mahlo, then On is not virtually Woodin, and hence there is a virtually Berkeley cardinal. 3 authors · Sep 13, 2021
- Constructing Invariant and Equivariant Operations by Symmetric Tensor Network Design of neural networks that incorporate symmetry is crucial for geometric deep learning. Central to this effort is the development of invariant and equivariant operations. This works presents a systematic method for constructing valid invariant and equivariant operations. It can handle inputs and outputs in the form of Cartesian tensors with different rank, as well as spherical tensors with different types. In addition, our method features a graphical representation utilizing the symmetric tensor network, which simplifies both the proofs and constructions related to invariant and equivariant functions. We also apply this approach to design the equivariant interaction message for the geometry graph neural network, and equivariant machine learning model to learn the constitutive law of materials. 5 authors · Aug 17, 2025
- A Group with Exactly One Noncommutator The question of whether there exists a finite group of order at least three in which every element except one is a commutator has remained unresolved in group theory. In this article, we address this open problem by developing an algorithmic approach that leverages several group theoretic properties of such groups. Specifically, we utilize a result of Frobenius and various necessary properties of such groups, combined with Plesken and Holt's extensive enumeration of finite perfect groups, to systematically examine all finite groups up to a certain order for the desired property. The computational core of our work is implemented using the computer system GAP (Groups, Algorithms, and Programming). We discover two nonisomorphic groups of order 368,640 that exhibit the desired property. Our investigation also establishes that this order is the minimum order for such a group to exist. As a result, this study provides a positive answer to Problem 17.76 in the Kourovka Notebook. In addition to the algorithmic framework, this paper provides a structural description of one of the two groups found. 2 authors · Nov 1, 2025
- Regularity of shadows and the geometry of the singular set associated to a Monge-Ampere equation Illuminating the surface of a convex body with parallel beams of light in a given direction generates a shadow region. We prove sharp regularity results for the boundary of this shadow in every direction of illumination. Moreover, techniques are developed for investigating the regularity of the region generated by orthogonally projecting a convex set onto another. As an application we study the geometry and Hausdorff dimension of the singular set corresponding to a Monge-Ampere equation. 2 authors · Nov 22, 2013
- Clifford Group Equivariant Simplicial Message Passing Networks We introduce Clifford Group Equivariant Simplicial Message Passing Networks, a method for steerable E(n)-equivariant message passing on simplicial complexes. Our method integrates the expressivity of Clifford group-equivariant layers with simplicial message passing, which is topologically more intricate than regular graph message passing. Clifford algebras include higher-order objects such as bivectors and trivectors, which express geometric features (e.g., areas, volumes) derived from vectors. Using this knowledge, we represent simplex features through geometric products of their vertices. To achieve efficient simplicial message passing, we share the parameters of the message network across different dimensions. Additionally, we restrict the final message to an aggregation of the incoming messages from different dimensions, leading to what we term shared simplicial message passing. Experimental results show that our method is able to outperform both equivariant and simplicial graph neural networks on a variety of geometric tasks. 4 authors · Feb 15, 2024
- Polynomial Width is Sufficient for Set Representation with High-dimensional Features Set representation has become ubiquitous in deep learning for modeling the inductive bias of neural networks that are insensitive to the input order. DeepSets is the most widely used neural network architecture for set representation. It involves embedding each set element into a latent space with dimension L, followed by a sum pooling to obtain a whole-set embedding, and finally mapping the whole-set embedding to the output. In this work, we investigate the impact of the dimension L on the expressive power of DeepSets. Previous analyses either oversimplified high-dimensional features to be one-dimensional features or were limited to analytic activations, thereby diverging from practical use or resulting in L that grows exponentially with the set size N and feature dimension D. To investigate the minimal value of L that achieves sufficient expressive power, we present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE). We demonstrate that L being poly(N, D) is sufficient for set representation using both embedding layers. We also provide a lower bound of L for the LP embedding layer. Furthermore, we extend our results to permutation-equivariant set functions and the complex field. 5 authors · Jul 8, 2023
- Tensor Decomposition Networks for Fast Machine Learning Interatomic Potential Computations SO(3)-equivariant networks are the dominant models for machine learning interatomic potentials (MLIPs). The key operation of such networks is the Clebsch-Gordan (CG) tensor product, which is computationally expensive. To accelerate the computation, we develop tensor decomposition networks (TDNs) as a class of approximately equivariant networks in which CG tensor products are replaced by low-rank tensor decompositions, such as the CANDECOMP/PARAFAC (CP) decomposition. With the CP decomposition, we prove (i) a uniform bound on the induced error of SO(3)-equivariance, and (ii) the universality of approximating any equivariant bilinear map. To further reduce the number of parameters, we propose path-weight sharing that ties all multiplicity-space weights across the O(L^3) CG paths into a single shared parameter set without compromising equivariance, where L is the maximum angular degree. The resulting layer acts as a plug-and-play replacement for tensor products in existing networks, and the computational complexity of tensor products is reduced from O(L^6) to O(L^4). We evaluate TDNs on PubChemQCR, a newly curated molecular relaxation dataset containing 105 million DFT-calculated snapshots. We also use existing datasets, including OC20, and OC22. Results show that TDNs achieve competitive performance with dramatic speedup in computations. Our code is publicly available as part of the AIRS library (https://github.com/divelab/AIRS/tree/main/OpenMol/TDN{https://github.com/divelab/AIRS/}). 9 authors · Jul 1, 2025
- New counterexamples to the birational Torelli theorem for Calabi--Yau manifolds We produce counterexamples to the birational Torelli theorem for Calabi-Yau manifolds in arbitrarily high dimension: this is done by exhibiting a series of non birational pairs of Calabi-Yau (n^2-1)-folds which, for n geq 2 even, admit an isometry between their middle cohomologies. These varieties also satisfy an mathbb L-equivalence relation in the Grothendieck ring of varieties, i.e. the difference of their classes annihilates a power of the class of the affine line. We state this last property for a broader class of Calabi-Yau pairs, namely all those which are realized as pushforwards of a general (1,1)-section on a homogeneous roof in the sense of Kanemitsu, along its two extremal contractions. 1 authors · Nov 7, 2022
- Shadow Cones: A Generalized Framework for Partial Order Embeddings Hyperbolic space has proven to be well-suited for capturing hierarchical relations in data, such as trees and directed acyclic graphs. Prior work introduced the concept of entailment cones, which uses partial orders defined by nested cones in the Poincar\'e ball to model hierarchies. Here, we introduce the ``shadow cones" framework, a physics-inspired entailment cone construction. Specifically, we model partial orders as subset relations between shadows formed by a light source and opaque objects in hyperbolic space. The shadow cones framework generalizes entailment cones to a broad class of formulations and hyperbolic space models beyond the Poincar\'e ball. This results in clear advantages over existing constructions: for example, shadow cones possess better optimization properties over constructions limited to the Poincar\'e ball. Our experiments on datasets of various sizes and hierarchical structures show that shadow cones consistently and significantly outperform existing entailment cone constructions. These results indicate that shadow cones are an effective way to model partial orders in hyperbolic space, offering physically intuitive and novel insights about the nature of such structures. 4 authors · May 24, 2023
- Vietoris--Rips Shadow for Euclidean Graph Reconstruction The shadow of an abstract simplicial complex K with vertices in R^N is a subset of R^N defined as the union of the convex hulls of simplices of K. The Vietoris--Rips complex of a metric space (S,d) at scale β is an abstract simplicial complex whose each k-simplex corresponds to (k+1) points of S within diameter β. In case Ssubsetmathbb R^2 and d(a,b)=|a-b| the standard Euclidean metric, the natural shadow projection of the Vietoris--Rips complex is already proved by Chambers et al. to induce isomorphisms on π_0 and π_1. We extend the result beyond the standard Euclidean distance on Ssubsetmathbb R^N to a family of path-based metrics, d^varepsilon_{S}. From the pairwise Euclidean distances of points in S, we introduce a family (parametrized by varepsilon) of path-based Vietoris--Rips complexes R^varepsilon_β(S) for a scale β>0. If SsubsetR^2 is Hausdorff-close to a planar Euclidean graph G, we provide quantitative bounds on scales β,varepsilon for the shadow projection map of the Vietoris--Rips complex of (S,d^varepsilon_S) at scale β to induce π_1-isomorphism. This paper first studies the homotopy-type recovery of Gsubsetmathbb R^N using the abstract Vietoris--Rips complex of a Hausdorff-close sample S under the d^varepsilon_S metric. Then, our result on the π_1-isomorphism induced by the shadow projection lends itself to providing also a geometrically close embedding for the reconstruction. Based on the length of the shortest loop and large-scale distortion of the embedding of G, we quantify the choice of a suitable sample density varepsilon and a scale β at which the shadow of R^varepsilon_β(S) is homotopy-equivalent and Hausdorff-close to G. 3 authors · Jun 2, 2025
- Learning Mesh Representations via Binary Space Partitioning Tree Networks Polygonal meshes are ubiquitous, but have only played a relatively minor role in the deep learning revolution. State-of-the-art neural generative models for 3D shapes learn implicit functions and generate meshes via expensive iso-surfacing. We overcome these challenges by employing a classical spatial data structure from computer graphics, Binary Space Partitioning (BSP), to facilitate 3D learning. The core operation of BSP involves recursive subdivision of 3D space to obtain convex sets. By exploiting this property, we devise BSP-Net, a network that learns to represent a 3D shape via convex decomposition without supervision. The network is trained to reconstruct a shape using a set of convexes obtained from a BSP-tree built over a set of planes, where the planes and convexes are both defined by learned network weights. BSP-Net directly outputs polygonal meshes from the inferred convexes. The generated meshes are watertight, compact (i.e., low-poly), and well suited to represent sharp geometry. We show that the reconstruction quality by BSP-Net is competitive with those from state-of-the-art methods while using much fewer primitives. We also explore variations to BSP-Net including using a more generic decoder for reconstruction, more general primitives than planes, as well as training a generative model with variational auto-encoders. Code is available at https://github.com/czq142857/BSP-NET-original. 3 authors · Jun 27, 2021
- Classifying Clustering Schemes Many clustering schemes are defined by optimizing an objective function defined on the partitions of the underlying set of a finite metric space. In this paper, we construct a framework for studying what happens when we instead impose various structural conditions on the clustering schemes, under the general heading of functoriality. Functoriality refers to the idea that one should be able to compare the results of clustering algorithms as one varies the data set, for example by adding points or by applying functions to it. We show that within this framework, one can prove a theorems analogous to one of J. Kleinberg, in which for example one obtains an existence and uniqueness theorem instead of a non-existence result. We obtain a full classification of all clustering schemes satisfying a condition we refer to as excisiveness. The classification can be changed by varying the notion of maps of finite metric spaces. The conditions occur naturally when one considers clustering as the statistical version of the geometric notion of connected components. By varying the degree of functoriality that one requires from the schemes it is possible to construct richer families of clustering schemes that exhibit sensitivity to density. 2 authors · Nov 23, 2010
- The Four-Point Correlator of Planar sYM at Twelve Loops We determine the 4-point correlation function and amplitude in planar, maximally supersymmetric Yang-Mills theory to 12 loops. We find that the recently-introduced 'double-triangle' rule in fact implies the previously described square and pentagon rules; and when applied to 12 loops, it fully determines the 11-loop correlator and fixes all but 3 of the (22,024,902) 12-loop coefficients; these remaining coefficients can be subsequently fixed using the '(single-)triangle' rule. Not only do we confirm the Catalan conjecture for anti-prism graphs, but we discover evidence for a greatly generalized Catalan conjecture for the coefficients of all polygon-framed fishnet graphs. We provide all contributions through 12 loops as ancillary files to this work. 4 authors · Mar 19, 2025
2 Beyond Euclid: An Illustrated Guide to Modern Machine Learning with Geometric, Topological, and Algebraic Structures The enduring legacy of Euclidean geometry underpins classical machine learning, which, for decades, has been primarily developed for data lying in Euclidean space. Yet, modern machine learning increasingly encounters richly structured data that is inherently nonEuclidean. This data can exhibit intricate geometric, topological and algebraic structure: from the geometry of the curvature of space-time, to topologically complex interactions between neurons in the brain, to the algebraic transformations describing symmetries of physical systems. Extracting knowledge from such non-Euclidean data necessitates a broader mathematical perspective. Echoing the 19th-century revolutions that gave rise to non-Euclidean geometry, an emerging line of research is redefining modern machine learning with non-Euclidean structures. Its goal: generalizing classical methods to unconventional data types with geometry, topology, and algebra. In this review, we provide an accessible gateway to this fast-growing field and propose a graphical taxonomy that integrates recent advances into an intuitive unified framework. We subsequently extract insights into current challenges and highlight exciting opportunities for future development in this field. 9 authors · Jul 12, 2024
- On affine spaces of alternating matrices with constant rank Let F be a field, and n geq r>0 be integers, with r even. Denote by A_n(F) the space of all n-by-n alternating matrices with entries in F. We consider the problem of determining the greatest possible dimension for an affine subspace of A_n(F) in which every matrix has rank equal to r (or rank at least r). Recently Rubei has solved this problem over the field of real numbers. We extend her result to all fields with large enough cardinality. Provided that n geq r+3 and |F|geq minbigl(r-1,r{2}+2bigr), we also determine the affine subspaces of rank r matrices in A_n(F) that have the greatest possible dimension, and we point to difficulties for the corresponding problem in the case nleq r+2. 1 authors · Jul 19, 2023
- Initialization of a Polyharmonic Cascade, Launch and Testing This paper concludes a series of studies on the polyharmonic cascade, a deep machine learning architecture theoretically derived from indifference principles and the theory of random functions. A universal initialization procedure is proposed, based on symmetric constellations in the form of hyperoctahedra with a central point. This initialization not only ensures stable training of cascades with tens and hundreds of layers (up to 500 layers without skip connections), but also radically simplifies the computations. Scalability and robustness are demonstrated on MNIST (98.3% without convolutions or augmentations), HIGGS (AUC approximately 0.885 on 11M examples), and Epsilon (AUC approximately 0.963 with 2000 features). All linear algebra is reduced to 2D operations and is efficiently executed on GPUs. A public repository and an archived snapshot are provided for full reproducibility. 1 authors · Dec 22, 2025
- An Algorithm for Computing with Brauer's Group Equivariant Neural Network Layers The learnable, linear neural network layers between tensor power spaces of R^{n} that are equivariant to the orthogonal group, O(n), the special orthogonal group, SO(n), and the symplectic group, Sp(n), were characterised in arXiv:2212.08630. We present an algorithm for multiplying a vector by any weight matrix for each of these groups, using category theoretic constructions to implement the procedure. We achieve a significant reduction in computational cost compared with a naive implementation by making use of Kronecker product matrices to perform the multiplication. We show that our approach extends to the symmetric group, S_n, recovering the algorithm of arXiv:2303.06208 in the process. 1 authors · Apr 27, 2023
- Higher Categories and Slices of Globular Operads In an unpublished preprint batanin, Batanin conjectures that it is possible to take `slices' of a globular operad, thereby isolating the algebraic structure in each dimension. It was further hypothesised that the slices of a globular operad for some theory of higher category contain essential information about those higher categories, namely whether or not they are equivalent to the fully weak variety. In this paper, we use the theory of presentations for globular operads developed in Me to provide a concrete definition of slices, and calculate the slices for several key theories of n-category. 1 authors · May 24, 2023
- Transitivities of maps of generalized topological spaces In this work, we present several new findings regarding the concepts of orbit-transitivity, strict orbit-transitivity, ω-transitivity, and μ-open-set transitivity for self-maps on generalized topological spaces. Let (X,μ) denote a generalized topological space. A point x in X is said to be quasi-μ-isolated if there exists a μ-open set U such that x in U and i_μ(U setminus c_μ({x})) = emptyset. We prove that x is a quasi-μ-isolated point of X precisely when there exists a μ-dense subset D of X for which x is a μ_D-isolated point of D. Moreover, in the case where X has no quasi-μ-isolated points, we establish that a map f: X to X is orbit-transitive (or strictly orbit-transitive) if and only if it is ω-transitive. 2 authors · Nov 9, 2025
- Best-of-Both-Worlds Fairness in Committee Voting The best-of-both-worlds paradigm advocates an approach that achieves desirable properties both ex-ante and ex-post. We launch a best-of-both-worlds fairness perspective for the important social choice setting of approval-based committee voting. To this end, we initiate work on ex-ante proportional representation properties in this domain and formalize a hierarchy of notions including Individual Fair Share (IFS), Unanimous Fair Share (UFS), Group Fair Share (GFS), and their stronger variants. We establish their compatibility with well-studied ex-post concepts such as extended justified representation (EJR) and fully justified representation (FJR). Our first main result is a polynomial-time algorithm that simultaneously satisfies ex-post EJR, ex-ante GFS and ex-ante Strong UFS. Subsequently, we strengthen our ex-post guarantee to FJR and present an algorithm that outputs a lottery which is ex-post FJR and ex-ante Strong UFS, but does not run in polynomial time. 5 authors · Mar 6, 2023
- A strictly monotone measure on tame sets that corresponds to a numerosity Adapting standard methods from geometric measure theory, we provide an example of a polynomial-valued measure mu on tame sets in R^d which satisfies many desirable properties. Among these is strict monotonicity: the measure of a proper subset is strictly less than the measure of the whole set. Using techniques from non-standard analysis, we display that the domain of mu can be extended to all subsets of R^d (up to equivalence modulo infinitesimals). The resulting extension is a numerosity function that encodes the i-dimensional Hausdorff measure for all iin N, as well as the i-th intrinsic volume functions. 1 authors · Aug 23, 2020
- Complexity of counting points on curves and the factor P_1(T) of the zeta function of surfaces This article concerns the computational complexity of a fundamental problem in number theory: counting points on curves and surfaces over finite fields. There is no subexponential-time algorithm known and it is unclear if it can be NP-hard. Given a curve, we present the first efficient Arthur-Merlin protocol to certify its point-count, its Jacobian group structure, and its Hasse-Weil zeta function. We extend this result to a smooth projective surface to certify the factor P_{1}(T), corresponding to the first Betti number, of the zeta function; by using the counting oracle. We give the first algorithm to compute P_{1}(T) that is poly(log q)-time if the degree D of the input surface is fixed; and in quantum poly(Dlog q)-time in general. Our technique in the curve case, is to sample hash functions using the Weil and Riemann-Roch bounds, to certify the group order of its Jacobian. For higher dimension varieties, we first reduce to the case of a surface, which is fibred as a Lefschetz pencil of hyperplane sections over P^{1}. The formalism of vanishing cycles, and the inherent big monodromy, enable us to prove an effective version of Deligne's `theoreme du pgcd' using the hard-Lefschetz theorem and an equidistribution result due to Katz. These reduce our investigations to that of computing the zeta function of a curve, defined over a finite field extension F_{Q}/F_{q} of poly-bounded degree. This explicitization of the theory yields the first nontrivial upper bounds on the computational complexity. 3 authors · Nov 4, 2025
- Machine Learning Algebraic Geometry for Physics We review some recent applications of machine learning to algebraic geometry and physics. Since problems in algebraic geometry can typically be reformulated as mappings between tensors, this makes them particularly amenable to supervised learning. Additionally, unsupervised methods can provide insight into the structure of such geometrical data. At the heart of this programme is the question of how geometry can be machine learned, and indeed how AI helps one to do mathematics. This is a chapter contribution to the book Machine learning and Algebraic Geometry, edited by A. Kasprzyk et al. 4 authors · Apr 21, 2022
- Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions Machine learning approaches relying on such criteria as adversarial robustness or multi-agent settings have raised the need for solving game-theoretic equilibrium problems. Of particular relevance to these applications are methods targeting finite-sum structure, which generically arises in empirical variants of learning problems in these contexts. Further, methods with computable approximation errors are highly desirable, as they provide verifiable exit criteria. Motivated by these applications, we study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems. Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees in which n component operators in the finite sum are ``on average'' either cocoercive or Lipschitz continuous and monotone, with parameter L. The resulting oracle complexity of our methods, which provide guarantees for the last iterate and for a (computable) operator norm residual, is mathcal{O}( n + nLvarepsilon^{-1}), which improves upon existing methods by a factor up to n. This constitutes the first variance reduction-type result for general finite-sum monotone inclusions and for more specific problems such as convex-concave optimization when operator norm residual is the optimality measure. We further argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting; i.e., the provided result is near-optimal. 3 authors · Oct 4, 2023
- Optimizing NOTEARS Objectives via Topological Swaps Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo. 4 authors · May 26, 2023
- Inversion of adjunction for quotient singularities III: semi-invariant case We prove the precise inversion of adjunction formula for finite linear group quotients of complete intersection varieties defined by semi-invariant equations. As an application, we prove the semi-continuity of minimal log discrepancies for them. These results extend the results in our first paper, where we prove the same results for complete intersection varieties defined by ``invariant equations". 2 authors · Dec 10, 2023
- Enumeration of linear codes with different hulls The hull of a linear code C is the intersection of C with its dual code. We present and analyze the number of linear q-ary codes of the same length and dimension but with different dimensions for their hulls. We prove that for given dimension k and length nge 2k the number of all [n,k]_q linear codes with hull dimension l decreases as l increases. We also present classification results for binary and ternary linear codes with trivial hulls (LCD and self-orthogonal) for some values of the length n and dimension k, comparing the obtained numbers with the number of all linear codes for the given n and k. 2 authors · Feb 2, 2024
3 Group Representational Position Encoding We present GRAPE (Group RepresentAtional Position Encoding), a unified framework for positional encoding based on group actions. GRAPE brings together two families of mechanisms: (i) multiplicative rotations (Multiplicative GRAPE) in SO(d) and (ii) additive logit biases (Additive GRAPE) arising from unipotent actions in the general linear group GL. In Multiplicative GRAPE, a position n in Z (or t in R) acts as G(n)=exp(n,ω,L) with a rank-2 skew generator L in R^{d times d}, yielding a relative, compositional, norm-preserving map with a closed-form matrix exponential. RoPE is recovered exactly when the d/2 planes are the canonical coordinate pairs with log-uniform spectrum. Learned commuting subspaces and compact non-commuting mixtures strictly extend this geometry to capture cross-subspace feature coupling at O(d) and O(r d) cost per head, respectively. In Additive GRAPE, additive logits arise as rank-1 (or low-rank) unipotent actions, recovering ALiBi and the Forgetting Transformer (FoX) as exact special cases while preserving an exact relative law and streaming cacheability. Altogether, GRAPE supplies a principled design space for positional geometry in long-context models, subsuming RoPE and ALiBi as special cases. Project Page: https://github.com/model-architectures/GRAPE. math-ai · Dec 8, 2025 2
- GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric (Clifford) algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN). These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or degenerate symmetric bilinear form. We propose a weight-sharing parametrization technique that takes into account the fundamental structures and operations of geometric algebras. Due to this technique, GLGENN architecture is parameter-light and has less tendency to overfitting than baseline equivariant models. GLGENN outperforms or matches competitors on several benchmarking equivariant tasks, including estimation of an equivariant function and a convex hull experiment, while using significantly fewer optimizable parameters. 2 authors · Jun 11, 2025
- Optimal Sample Complexity of Contrastive Learning Contrastive learning is a highly successful technique for learning representations of data from labeled tuples, specifying the distance relations within the tuple. We study the sample complexity of contrastive learning, i.e. the minimum number of labeled tuples sufficient for getting high generalization accuracy. We give tight bounds on the sample complexity in a variety of settings, focusing on arbitrary distance functions, both general ell_p-distances, and tree metrics. Our main result is an (almost) optimal bound on the sample complexity of learning ell_p-distances for integer p. For any p ge 1 we show that tilde Theta(min(nd,n^2)) labeled tuples are necessary and sufficient for learning d-dimensional representations of n-point datasets. Our results hold for an arbitrary distribution of the input samples and are based on giving the corresponding bounds on the Vapnik-Chervonenkis/Natarajan dimension of the associated problems. We further show that the theoretical bounds on sample complexity obtained via VC/Natarajan dimension can have strong predictive power for experimental results, in contrast with the folklore belief about a substantial gap between the statistical learning theory and the practice of deep learning. 5 authors · Dec 1, 2023
- Alcove Walks and GKM Theory for Affine Flags We develop the GKM theory for the torus-equivariant cohomology of the affine flag variety using the combinatorics of alcove walks. Dual to the usual GKM setup, which depicts the orbits of the small torus action on a graph, alcove walks take place in tessellations of Euclidean space. Walks in affine rank two occur on triangulations of the plane, providing a more direct connection to splines used for approximating surfaces. Alcove walks in GKM theory also need not be minimal length, and can instead be randomly generated, giving rise to more flexible implementation. This work reinterprets and recovers classical results in GKM theory on the affine flag variety, generalizing them to both non-minimal and folded alcove walks, all motivated by applications to splines. 2 authors · Mar 21, 2023
1 A Compositional Atlas for Algebraic Circuits Circuits based on sum-product structure have become a ubiquitous representation to compactly encode knowledge, from Boolean functions to probability distributions. By imposing constraints on the structure of such circuits, certain inference queries become tractable, such as model counting and most probable configuration. Recent works have explored analyzing probabilistic and causal inference queries as compositions of basic operators to derive tractability conditions. In this paper, we take an algebraic perspective for compositional inference, and show that a large class of queries - including marginal MAP, probabilistic answer set programming inference, and causal backdoor adjustment - correspond to a combination of basic operators over semirings: aggregation, product, and elementwise mapping. Using this framework, we uncover simple and general sufficient conditions for tractable composition of these operators, in terms of circuit properties (e.g., marginal determinism, compatibility) and conditions on the elementwise mappings. Applying our analysis, we derive novel tractability conditions for many such compositional queries. Our results unify tractability conditions for existing problems on circuits, while providing a blueprint for analysing novel compositional inference queries. 4 authors · Dec 6, 2024
- Dual Lagrangian Learning for Conic Optimization This paper presents Dual Lagrangian Learning (DLL), a principled learning methodology for dual conic optimization proxies. DLL leverages conic duality and the representation power of ML models to provide high-duality, dual-feasible solutions, and therefore valid Lagrangian dual bounds, for linear and nonlinear conic optimization problems. The paper introduces a systematic dual completion procedure, differentiable conic projection layers, and a self-supervised learning framework based on Lagrangian duality. It also provides closed-form dual completion formulae for broad classes of conic problems, which eliminate the need for costly implicit layers. The effectiveness of DLL is demonstrated on linear and nonlinear conic optimization problems. The proposed methodology significantly outperforms a state-of-the-art learning-based method, and achieves 1000x speedups over commercial interior-point solvers with optimality gaps under 0.5\% on average. 2 authors · Feb 5, 2024
- More on the Weak Gravity Conjecture via Convexity of Charged Operators The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension Delta (Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4+epsilon dimensions. As an example of the second type we consider the U(N)times U(M) model in 4-epsilon dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property. 5 authors · Sep 10, 2021
- Fair Lotteries for Participatory Budgeting In pursuit of participatory budgeting (PB) outcomes with broader fairness guarantees, we initiate the study of lotteries over discrete PB outcomes. As the projects have heterogeneous costs, the amount spent may not be equal ex ante and ex post. To address this, we develop a technique to bound the amount by which the ex-post spend differs from the ex-ante spend -- the property is termed budget balanced up to one project (BB1). With respect to fairness, we take a best-of-both-worlds perspective, seeking outcomes that are both ex-ante and ex-post fair. Towards this goal, we initiate a study of ex-ante fairness properties in PB, including Individual Fair Share (IFS), Unanimous Fair Share (UFS) and their stronger variants, as well as Group Fair Share (GFS). We show several incompatibility results between these ex-ante fairness notions and existing ex-post concepts based on justified representation. One of our main contributions is a randomized algorithm which simultaneously satisfies ex-ante Strong UFS, ex-post full justified representation (FJR) and ex-post BB1 for PB with binary utilities. 5 authors · Apr 8, 2024
- A Generic First-Order Algorithmic Framework for Bi-Level Programming Beyond Lower-Level Singleton In recent years, a variety of gradient-based first-order methods have been developed to solve bi-level optimization problems for learning applications. However, theoretical guarantees of these existing approaches heavily rely on the simplification that for each fixed upper-level variable, the lower-level solution must be a singleton (a.k.a., Lower-Level Singleton, LLS). In this work, we first design a counter-example to illustrate the invalidation of such LLS condition. Then by formulating BLPs from the view point of optimistic bi-level and aggregating hierarchical objective information, we establish Bi-level Descent Aggregation (BDA), a flexible and modularized algorithmic framework for generic bi-level optimization. Theoretically, we derive a new methodology to prove the convergence of BDA without the LLS condition. Our investigations also demonstrate that BDA is indeed compatible to a verify of particular first-order computation modules. Additionally, as an interesting byproduct, we also improve these conventional first-order bi-level schemes (under the LLS simplification). Particularly, we establish their convergences with weaker assumptions. Extensive experiments justify our theoretical results and demonstrate the superiority of the proposed BDA for different tasks, including hyper-parameter optimization and meta learning. 5 authors · Jun 7, 2020
- Class Numbers and Pell's Equation x^2 + 105y^2 = z^2 Two well-studied Diophantine equations are those of Pythagorean triples and elliptic curves, for the first we have a parametrization through rational points on the unit circle, and for the second we have a structure theorem for the group of rational solutions. Recently, Yekutieli discussed a connection between these two problems, and described the group structure of Pythagorean triples and the number of triples for a given hypotenuse. In arXiv:2112.03663 we generalized these methods and results to Pell's equation. We find a similar group structure and count on the number of solutions for a given z to x^2 + Dy^2 = z^2 when D is 1 or 2 modulo 4 and the class group of Q[-D] is a free Z_2 module, which always happens if the class number is at most 2. In this paper, we discuss the main results of arXiv:2112.03663 using some concrete examples in the case of D=105. 4 authors · Mar 30, 2022
3 GeometryZero: Improving Geometry Solving for LLM with Group Contrastive Policy Optimization Recent advances in large language models (LLMs) have demonstrated remarkable capabilities across diverse domains, particularly in mathematical reasoning, amid which geometry problem solving remains a challenging area where auxiliary construction plays a enssential role. Existing approaches either achieve suboptimal performance or rely on massive LLMs (e.g., GPT-4o), incurring massive computational costs. We posit that reinforcement learning with verifiable reward (e.g., GRPO) offers a promising direction for training smaller models that effectively combine auxiliary construction with robust geometric reasoning. However, directly applying GRPO to geometric reasoning presents fundamental limitations due to its dependence on unconditional rewards, which leads to indiscriminate and counterproductive auxiliary constructions. To address these challenges, we propose Group Contrastive Policy Optimization (GCPO), a novel reinforcement learning framework featuring two key innovations: (1) Group Contrastive Masking, which adaptively provides positive or negative reward signals for auxiliary construction based on contextual utility, and a (2) length reward that promotes longer reasoning chains. Building on GCPO, we develop GeometryZero, a family of affordable-size geometric reasoning models that judiciously determine when to employ auxiliary construction. Our extensive empirical evaluation across popular geometric benchmarks (Geometry3K, MathVista) demonstrates that GeometryZero models consistently outperform baselines (e.g. GRPO), achieving an average improvement of 4.29% across all benchmarks. 7 authors · Jun 8, 2025 2
- Language Models with Rationality While large language models (LLMs) are proficient at question-answering (QA), it is not always clear how (or even if) an answer follows from their latent "beliefs". This lack of interpretability is a growing impediment to widespread use of LLMs. To address this, our goals are to make model beliefs and their inferential relationships explicit, and to resolve inconsistencies that may exist, so that answers are supported by interpretable chains of reasoning drawn from a consistent network of beliefs. Our approach, which we call REFLEX, is to add a rational, self-reflecting layer on top of the LLM. First, given a question, we construct a belief graph using a backward-chaining process to materialize relevant model beliefs (including beliefs about answer candidates) and their inferential relationships. Second, we identify and minimize contradictions in that graph using a formal constraint reasoner. We find that REFLEX significantly improves consistency (by 8%-11% absolute) without harming overall answer accuracy, resulting in answers supported by faithful chains of reasoning drawn from a more consistent belief system. This suggests a new style of system architecture in which an LLM extended with a rational layer can provide an interpretable window into system beliefs, add a systematic reasoning capability, and repair latent inconsistencies present in the LLM. 6 authors · May 23, 2023
- Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations Recently, semidefinite programming (SDP) techniques have shown great promise in providing accurate Lipschitz bounds for neural networks. Specifically, the LipSDP approach (Fazlyab et al., 2019) has received much attention and provides the least conservative Lipschitz upper bounds that can be computed with polynomial time guarantees. However, one main restriction of LipSDP is that its formulation requires the activation functions to be slope-restricted on [0,1], preventing its further use for more general activation functions such as GroupSort, MaxMin, and Householder. One can rewrite MaxMin activations for example as residual ReLU networks. However, a direct application of LipSDP to the resultant residual ReLU networks is conservative and even fails in recovering the well-known fact that the MaxMin activation is 1-Lipschitz. Our paper bridges this gap and extends LipSDP beyond slope-restricted activation functions. To this end, we provide novel quadratic constraints for GroupSort, MaxMin, and Householder activations via leveraging their underlying properties such as sum preservation. Our proposed analysis is general and provides a unified approach for estimating ell_2 and ell_infty Lipschitz bounds for a rich class of neural network architectures, including non-residual and residual neural networks and implicit models, with GroupSort, MaxMin, and Householder activations. Finally, we illustrate the utility of our approach with a variety of experiments and show that our proposed SDPs generate less conservative Lipschitz bounds in comparison to existing approaches. 7 authors · Jan 25, 2024
- Subspace power method for symmetric tensor decomposition We introduce the Subspace Power Method (SPM) for calculating the CP decomposition of low-rank real symmetric tensors. This algorithm calculates one new CP component at a time, alternating between applying the shifted symmetric higher-order power method (SS-HOPM) to a certain modified tensor, constructed from a matrix flattening of the original tensor; and using appropriate deflation steps. We obtain rigorous guarantees for SPM regarding convergence and global optima for input tensors of dimension d and order m of CP rank up to O(d^{lfloor m/2rfloor}), via results in classical algebraic geometry and optimization theory. As a by-product of our analysis we prove that SS-HOPM converges unconditionally, settling a conjecture in [Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM Journal on Matrix Analysis and Applications 32(4), 1095-1124 (2011)]. We present numerical experiments which demonstrate that SPM is efficient and robust to noise, being up to one order of magnitude faster than state-of-the-art CP decomposition algorithms in certain experiments. Furthermore, prior knowledge of the CP rank is not required by SPM. 2 authors · Dec 9, 2019
- A link between covering and coefficient theorems for holomorphic functions Recently the author presented a new approach to solving the coefficient problems for various classes of holomorphic functions f(z) = sumlimits_0^infty c_n z^n, not necessarily univalent. This approach is based on lifting the given polynomial coefficient functionals J(f) = J(c_{m_1}, dots, c_{m_s}), 2 < c_{m_1} < dots < c_{m_s} < infty, onto the Bers fiber space over universal Teichmuller space and applying the analytic and geometric features of Teichm\"{u}ller spaces, especially the Bers isomorphism theorem for Teichmuller spaces of punctured Riemann surfaces. In this paper, we extend this approach to more general classes of functions. In particular, this provides a strengthening of de Branges' theorem solving the Bieberbach conjecture. 1 authors · Apr 1, 2025
2 Gold-Medal-Level Olympiad Geometry Solving with Efficient Heuristic Auxiliary Constructions Automated theorem proving in Euclidean geometry, particularly for International Mathematical Olympiad (IMO) level problems, remains a major challenge and an important research focus in Artificial Intelligence. In this paper, we present a highly efficient method for geometry theorem proving that runs entirely on CPUs without relying on neural network-based inference. Our initial study shows that a simple random strategy for adding auxiliary points can achieve silver-medal level human performance on IMO. Building on this, we propose HAGeo, a Heuristic-based method for adding Auxiliary constructions in Geometric deduction that solves 28 of 30 problems on the IMO-30 benchmark, achieving gold-medal level performance and surpassing AlphaGeometry, a competitive neural network-based approach, by a notable margin. To evaluate our method and existing approaches more comprehensively, we further construct HAGeo-409, a benchmark consisting of 409 geometry problems with human-assessed difficulty levels. Compared with the widely used IMO-30, our benchmark poses greater challenges and provides a more precise evaluation, setting a higher bar for geometry theorem proving. Microsoft · Nov 26, 2025 2
- Learning to Act Greedily: Polymatroid Semi-Bandits Many important optimization problems, such as the minimum spanning tree and minimum-cost flow, can be solved optimally by a greedy method. In this work, we study a learning variant of these problems, where the model of the problem is unknown and has to be learned by interacting repeatedly with the environment in the bandit setting. We formalize our learning problem quite generally, as learning how to maximize an unknown modular function on a known polymatroid. We propose a computationally efficient algorithm for solving our problem and bound its expected cumulative regret. Our gap-dependent upper bound is tight up to a constant and our gap-free upper bound is tight up to polylogarithmic factors. Finally, we evaluate our method on three problems and demonstrate that it is practical. 4 authors · May 29, 2014
- Cyclic Block Coordinate Descent With Variance Reduction for Composite Nonconvex Optimization Nonconvex optimization is central in solving many machine learning problems, in which block-wise structure is commonly encountered. In this work, we propose cyclic block coordinate methods for nonconvex optimization problems with non-asymptotic gradient norm guarantees. Our convergence analysis is based on a gradient Lipschitz condition with respect to a Mahalanobis norm, inspired by a recent progress on cyclic block coordinate methods. In deterministic settings, our convergence guarantee matches the guarantee of (full-gradient) gradient descent, but with the gradient Lipschitz constant being defined w.r.t.~a Mahalanobis norm. In stochastic settings, we use recursive variance reduction to decrease the per-iteration cost and match the arithmetic operation complexity of current optimal stochastic full-gradient methods, with a unified analysis for both finite-sum and infinite-sum cases. We prove a faster linear convergence result when a Polyak-{\L}ojasiewicz (P{\L}) condition holds. To our knowledge, this work is the first to provide non-asymptotic convergence guarantees -- variance-reduced or not -- for a cyclic block coordinate method in general composite (smooth + nonsmooth) nonconvex settings. Our experimental results demonstrate the efficacy of the proposed cyclic scheme in training deep neural nets. 4 authors · Dec 9, 2022
- Tversky Neural Networks: Psychologically Plausible Deep Learning with Differentiable Tversky Similarity Work in psychology has highlighted that the geometric model of similarity standard in deep learning is not psychologically plausible because its metric properties such as symmetry do not align with human perception. In contrast, Tversky (1977) proposed an axiomatic theory of similarity based on a representation of objects as sets of features, and their similarity as a function of common and distinctive features. However, this model has not been used in deep learning before, partly due to the challenge of incorporating discrete set operations. We develop a differentiable parameterization of Tversky's similarity that is learnable through gradient descent, and derive neural network building blocks such as the Tversky projection layer, which unlike the linear projection layer can model non-linear functions such as XOR. Through experiments with image recognition and language modeling, we show that the Tversky projection layer is a beneficial replacement for the linear projection layer, which employs geometric similarity. On the NABirds image classification task, a frozen ResNet-50 adapted with a Tversky projection layer achieves a 24.7% relative accuracy improvement over the linear layer adapter baseline. With Tversky projection layers, GPT-2's perplexity on PTB decreases by 7.5%, and its parameter count by 34.8%. Finally, we propose a unified interpretation of both projection layers as computing similarities of input stimuli to learned prototypes, for which we also propose a novel visualization technique highlighting the interpretability of Tversky projection layers. Our work offers a new paradigm for thinking about the similarity model implicit in deep learning, and designing networks that are interpretable under an established theory of psychological similarity. 3 authors · May 20, 2025
1 Faster Algorithms for Structured Matrix Multiplication via Flip Graph Search We give explicit low-rank bilinear non-commutative schemes for multiplying structured n times n matrices with 2 leq n leq 5, which serve as building blocks for recursive algorithms with improved multiplicative factors in asymptotic complexity. Our schemes are discovered over F_2 or F_3 and lifted to Z or Q. Using a flip graph search over tensor decompositions, we derive schemes for general, upper-triangular, lower-triangular, symmetric, and skew-symmetric inputs, as well as products of a structured matrix with its transpose. In particular, we obtain 4 times 4 rank-34 schemes: (i) multiplying a general matrix by its transpose using 10 recursive calls, improving the factor from 26/41 (0.634) to 8/13 (0.615); and (ii) multiplying an upper-triangular matrix by a general matrix using 12 recursive calls, improving the factor from 8/13 (0.615) to 22/37 (0.595). Additionally, using F_3 flip graphs, we discover schemes over Q that fundamentally require the inverse of 2, including a 2 times 2 symmetric-symmetric multiplication of rank 5 and a 3 times 3 skew-symmetric-general multiplication of rank 14 (improving upon AlphaTensor's 15). 3 authors · Nov 13, 2025
- Reverse derivative categories The reverse derivative is a fundamental operation in machine learning and automatic differentiation. This paper gives a direct axiomatization of a category with a reverse derivative operation, in a similar style to that given by Cartesian differential categories for a forward derivative. Intriguingly, a category with a reverse derivative also has a forward derivative, but the converse is not true. In fact, we show explicitly what a forward derivative is missing: a reverse derivative is equivalent to a forward derivative with a dagger structure on its subcategory of linear maps. Furthermore, we show that these linear maps form an additively enriched category with dagger biproducts. 7 authors · Oct 15, 2019
- Strategyproof and Proportionally Fair Facility Location We focus on a simple, one-dimensional collective decision problem (often referred to as the facility location problem) and explore issues of strategyproofness and proportionality-based fairness. We introduce and analyze a hierarchy of proportionality-based fairness axioms of varying strength: Individual Fair Share (IFS), Unanimous Fair Share (UFS), Proportionality (as in Freeman et al, 2021), and Proportional Fairness (PF). For each axiom, we characterize the family of mechanisms that satisfy the axiom and strategyproofness. We show that imposing strategyproofness renders many of the axioms to be equivalent: the family of mechanisms that satisfy proportionality, unanimity, and strategyproofness is equivalent to the family of mechanisms that satisfy UFS and strategyproofness, which, in turn, is equivalent to the family of mechanisms that satisfy PF and strategyproofness. Furthermore, there is a unique such mechanism: the Uniform Phantom mechanism, which is studied in Freeman et al. (2021). We also characterize the outcomes of the Uniform Phantom mechanism as the unique (pure) equilibrium outcome for any mechanism that satisfies continuity, strict monotonicity, and UFS. Finally, we analyze the approximation guarantees, in terms of optimal social welfare and minimum total cost, obtained by mechanisms that are strategyproof and satisfy each proportionality-based fairness axiom. We show that the Uniform Phantom mechanism provides the best approximation of the optimal social welfare (and also minimum total cost) among all mechanisms that satisfy UFS. 4 authors · Nov 2, 2021