new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 17

Diverse Controllable Diffusion Policy with Signal Temporal Logic

Generating realistic simulations is critical for autonomous system applications such as self-driving and human-robot interactions. However, driving simulators nowadays still have difficulty in generating controllable, diverse, and rule-compliant behaviors for road participants: Rule-based models cannot produce diverse behaviors and require careful tuning, whereas learning-based methods imitate the policy from data but are not designed to follow the rules explicitly. Besides, the real-world datasets are by nature "single-outcome", making the learning method hard to generate diverse behaviors. In this paper, we leverage Signal Temporal Logic (STL) and Diffusion Models to learn controllable, diverse, and rule-aware policy. We first calibrate the STL on the real-world data, then generate diverse synthetic data using trajectory optimization, and finally learn the rectified diffusion policy on the augmented dataset. We test on the NuScenes dataset and our approach can achieve the most diverse rule-compliant trajectories compared to other baselines, with a runtime 1/17X to the second-best approach. In the closed-loop testing, our approach reaches the highest diversity, rule satisfaction rate, and the least collision rate. Our method can generate varied characteristics conditional on different STL parameters in testing. A case study on human-robot encounter scenarios shows our approach can generate diverse and closed-to-oracle trajectories. The annotation tool, augmented dataset, and code are available at https://github.com/mengyuest/pSTL-diffusion-policy.

  • 2 authors
·
Mar 4, 2025 2

RECAST: Expanding the Boundaries of LLMs' Complex Instruction Following with Multi-Constraint Data

Large language models (LLMs) are increasingly expected to tackle complex tasks, driven by their expanding applications and users' growing proficiency in crafting sophisticated prompts. However, as the number of explicitly stated requirements increases (particularly more than 10 constraints), LLMs often struggle to accurately follow such complex instructions, which limits their applicability in complex real-world scenarios. To the best of our knowledge, existing datasets do not exceed 10 constraints per instance. To address this challenge, we propose RECAST, an efficient and scalable framework for synthesizing datasets where each example incorporates far more constraints than those in existing benchmarks, aiming to challenge and extend the boundaries of models' ability to follow complex instructions. These constraints are extracted from real-world prompt-response pairs to ensure practical relevance. Using this framework, we construct RECAST-30K, a large-scale, high-quality dataset comprising 30k instances spanning 19 constraint types. Experimental results demonstrate that models finetuned on RECAST-30K substantially improve in following complex instructions while maintaining their general capabilities without degradation. Moreover, RECAST enables automatic verification of constraint satisfaction via rule-based validators for quantitative constraints and LLM-based validators for qualitative ones; the verifiability provided by RECAST enables the design of reward functions for reinforcement learning, which further boosts model performance on complex and challenging tasks.

  • 16 authors
·
May 25, 2025

The Paradox of Robustness: Decoupling Rule-Based Logic from Affective Noise in High-Stakes Decision-Making

While Large Language Models (LLMs) are widely documented to be sensitive to minor prompt perturbations and prone to sycophantic alignment with user biases, their robustness in consequential, rule-bound decision-making remains under-explored. In this work, we uncover a striking "Paradox of Robustness": despite their known lexical brittleness, instruction-tuned LLMs exhibit a behavioral and near-total invariance to emotional framing effects. Using a novel controlled perturbation framework across three high-stakes domains (healthcare, law, and finance), we quantify a robustness gap where LLMs demonstrate 110-300 times greater resistance to narrative manipulation than human subjects. Specifically, we find a near-zero effect size for models (Cohen's h = 0.003) compared to the substantial biases observed in humans (Cohen's h in [0.3, 0.8]). This result is highly counterintuitive and suggests the mechanisms driving sycophancy and prompt sensitivity do not necessarily translate to a failure in logical constraint satisfaction. We show that this invariance persists across models with diverse training paradigms. Our findings show that while LLMs may be "brittle" to how a query is formatted, they are remarkably "stable" against why a decision should be biased. Our findings establish that instruction-tuned models can decouple logical rule-adherence from persuasive narratives, offering a source of decision stability that complements, and even potentially de-biases, human judgment in institutional contexts. We release the 162-scenario benchmark, code, and data to facilitate the rigorous evaluation of narrative-induced bias and robustness on GitHub.com.

  • 2 authors
·
Jan 29

AutoRule: Reasoning Chain-of-thought Extracted Rule-based Rewards Improve Preference Learning

Rule-based rewards offer a promising strategy for improving reinforcement learning from human feedback (RLHF), but current approaches often rely on manual rule engineering. We present AutoRule, a fully automated method for extracting rules from preference feedback and formulating them into rule-based rewards. AutoRule extraction operates in three stages: it leverages a reasoning model to interpret user preferences, identifies candidate rules from the reasoning chain of these interpretations, and synthesizes them into a unified rule set. Leveraging the finalized rule set, we employ language-model verifiers to compute the fraction of rules satisfied by each output, using this metric as an auxiliary reward alongside the learned reward model during policy optimization. Training a Llama-3-8B model with AutoRule results in a 28.6\% relative improvement in length-controlled win rate on AlpacaEval2.0, and a 6.1\% relative gain in second-turn performance on a held-out MT-Bench subset, compared to a GRPO baseline trained with the same learned reward model but without the rule-based auxiliary reward. Our analysis confirms that the extracted rules exhibit good agreement with dataset preference. We find that AutoRule demonstrates reduced reward hacking compared to a learned reward model when run over two episodes. Finally, our case study suggests that the extracted rules capture unique qualities valued in different datasets. The extracted rules are provided in the appendix, and the code is open-sourced at https://github.com/cxcscmu/AutoRule.

  • 2 authors
·
Jun 18, 2025

Primary and Secondary Factor Consistency as Domain Knowledge to Guide Happiness Computing in Online Assessment

Happiness computing based on large-scale online web data and machine learning methods is an emerging research topic that underpins a range of issues, from personal growth to social stability. Many advanced Machine Learning (ML) models with explanations are used to compute the happiness online assessment while maintaining high accuracy of results. However, domain knowledge constraints, such as the primary and secondary relations of happiness factors, are absent from these models, which limits the association between computing results and the right reasons for why they occurred. This article attempts to provide new insights into the explanation consistency from an empirical study perspective. Then we study how to represent and introduce domain knowledge constraints to make ML models more trustworthy. We achieve this through: (1) proving that multiple prediction models with additive factor attributions will have the desirable property of primary and secondary relations consistency, and (2) showing that factor relations with quantity can be represented as an importance distribution for encoding domain knowledge. Factor explanation difference is penalized by the Kullback-Leibler divergence-based loss among computing models. Experimental results using two online web datasets show that domain knowledge of stable factor relations exists. Using this knowledge not only improves happiness computing accuracy but also reveals more significative happiness factors for assisting decisions well.

  • 5 authors
·
Feb 17, 2024

ChatRule: Mining Logical Rules with Large Language Models for Knowledge Graph Reasoning

Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.

  • 6 authors
·
Sep 4, 2023

RuleReasoner: Reinforced Rule-based Reasoning via Domain-aware Dynamic Sampling

Rule-based reasoning has been acknowledged as one of the fundamental problems in reasoning, while deviations in rule formats, types, and complexity in real-world applications pose severe challenges. Recent studies have shown that large reasoning models (LRMs) have remarkable reasoning capabilities, and their performance is substantially enhanced by reinforcement learning (RL). However, it remains an open question whether small reasoning models (SRMs) can learn rule-based reasoning effectively with robust generalization across diverse tasks and domains. To address this, we introduce Reinforced Rule-based Reasoning, a.k.a. RuleReasoner, a simple yet effective method to conduct rule-based reasoning via a wide collection of curated tasks and a novel domain-aware dynamic sampling approach. Specifically, RuleReasoner resamples each training batch by updating the sampling weights of different domains based on historical rewards. This facilitates domain augmentation and flexible online learning schedules for RL, obviating the need for pre-hoc human-engineered mix-training recipes used in existing methods. Empirical evaluations on in-distribution (ID) and out-of-distribution (OOD) benchmarks reveal that RuleReasoner outperforms frontier LRMs by a significant margin (Delta4.1% average points on eight ID tasks and Delta10.4% average points on three OOD tasks over OpenAI-o1). Notably, our approach also exhibits higher computational efficiency compared to prior dynamic sampling methods for RL.