new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 2

Enhancing Large Language Models for Text-to-Testcase Generation

Context: Test-driven development (TDD) is a widely employed software development practice that involves developing test cases based on requirements prior to writing the code. Although various methods for automated test case generation have been proposed, they are not specifically tailored for TDD, where requirements instead of code serve as input. Objective: In this paper, we introduce a text-to-testcase generation approach based on a large language model (GPT-3.5) that is fine-tuned on our curated dataset with an effective prompt design. Method: Our approach involves enhancing the capabilities of basic GPT-3.5 for text-to-testcase generation task that is fine-tuned on our curated dataset with an effective prompting design. We evaluated the effectiveness of our approach using a span of five large-scale open-source software projects. Results: Our approach generated 7k test cases for open source projects, achieving 78.5% syntactic correctness, 67.09% requirement alignment, and 61.7% code coverage, which substantially outperforms all other LLMs (basic GPT-3.5, Bloom, and CodeT5). In addition, our ablation study demonstrates the substantial performance improvement of the fine-tuning and prompting components of the GPT-3.5 model. Conclusions: These findings lead us to conclude that fine-tuning and prompting should be considered in the future when building a language model for the text-to-testcase generation task

  • 4 authors
·
Feb 19, 2024

TDD Without Tears: Towards Test Case Generation from Requirements through Deep Reinforcement Learning

Test-driven development (TDD) is a widely-employed software development practice that mandates writing test cases based on requirements before writing the actual code. While writing test cases is the centerpiece of TDD, it is time-consuming, expensive, and often shunned by developers. To address these issues associated with TDD, automated test case generation approaches have recently been investigated. Such approaches take source code as input, but not the requirements. Therefore, existing work does not fully support true TDD, as actual code is required to generate test cases. In addition, current deep learning-based test case generation approaches are trained with one learning objective, i.e., to generate test cases that are exactly matched with the ground-truth test cases. However, such approaches may limit the model's ability to generate different yet correct test cases. In this paper, we introduce PyTester, a Text-to-Testcase generation approach that can automatically generate syntactically correct, executable, complete, and effective test cases while being aligned with a given natural language requirement. We evaluate PyTester on the public APPS benchmark dataset, and the results show that our Deep RL approach enables PyTester, a small language model, to outperform much larger language models like GPT3.5, StarCoder, and InCoder. Our findings suggest that future research could consider improving small over large LMs for better resource efficiency by integrating the SE domain knowledge into the design of reinforcement learning architecture.

  • 4 authors
·
Jan 15, 2024

CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model

Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.

  • 38 authors
·
Oct 9, 2023

DRIVE: Data Curation Best Practices for Reinforcement Learning with Verifiable Reward in Competitive Code Generation

Recent reasoning-first models (e.g., OpenAI o1, DeepSeek R1) have spurred a resurgence of interest in RLVR. Nevertheless, advances are dominated by mathematics (e.g., AIME), with competitive-programming code generation underexplored and data curation receiving less attention than RL algorithm design. We investigate how to construct RLVR datasets (i.e., RL prompts) and present practical training techniques that yield strong performance on competitive-programming code generation. Our pipeline begins with supervised fine-tuning (SFT) distilled from strong open-source models, augmented with general-purpose and reasoning-intensive data. RL then follows a two-stage process with executable, testcase-driven rewards: first, training on a large, uniformly distributed set of competitive-programming problems using Group Relative Policy Optimization (GRPO) with 8 rollouts per prompt and a relatively short response-generation window (e.g., 32k during SFT and 24k in this stage) to expand entropy and mitigate repetition and truncation; second, we perform Pre-GRPO: updating on a small, high-quality set of challenging problems with a large rollout budget (64 rollouts per prompt) under a hard-focus curriculum that continuously retains the most difficult instances throughout training. We implement our method on Qwen2.5-32B and evaluate on LeetCode and Codeforces weekly contests to avoid data leakage. The resulting model achieves state-of-the-art performance among models of similar scale and is comparable to leading systems such as DeepSeek v3.1 and Doubao-1.5-Thinking. We also examine scaling trends and observe strong RL scaling on an internal large-scale MoE model. Our study distills concise best practices for data curation, entropy expansion, and curriculum design in RLVR for competitive-programming code generation.

tencent Tencent
·
Nov 9, 2025 5

Unit Test Case Generation with Transformers and Focal Context

Automated unit test case generation tools facilitate test-driven development and support developers by suggesting tests intended to identify flaws in their code. Existing approaches are usually guided by the test coverage criteria, generating synthetic test cases that are often difficult for developers to read or understand. In this paper we propose AthenaTest, an approach that aims to generate unit test cases by learning from real-world focal methods and developer-written testcases. We formulate unit test case generation as a sequence-to-sequence learning task, adopting a two-step training procedure consisting of denoising pretraining on a large unsupervised Java corpus, and supervised finetuning for a downstream translation task of generating unit tests. We investigate the impact of natural language and source code pretraining, as well as the focal context information surrounding the focal method. Both techniques provide improvements in terms of validation loss, with pretraining yielding 25% relative improvement and focal context providing additional 11.1% improvement. We also introduce Methods2Test, the largest publicly available supervised parallel corpus of unit test case methods and corresponding focal methods in Java, which comprises 780K test cases mined from 91K open-source repositories from GitHub. We evaluate AthenaTest on five defects4j projects, generating 25K passing test cases covering 43.7% of the focal methods with only 30 attempts. We execute the test cases, collect test coverage information, and compare them with test cases generated by EvoSuite and GPT-3, finding that our approach outperforms GPT-3 and has comparable coverage w.r.t. EvoSuite. Finally, we survey professional developers on their preference in terms of readability, understandability, and testing effectiveness of the generated tests, showing overwhelmingly preference towards AthenaTest.

  • 5 authors
·
Sep 11, 2020

TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models

Software testing is a crucial phase in the software life cycle, helping identify potential risks and reduce maintenance costs. With the advancement of Large Language Models (LLMs), researchers have proposed an increasing number of LLM-based software testing techniques, particularly in the area of test case generation. Despite the growing interest, limited efforts have been made to thoroughly evaluate the actual capabilities of LLMs in this task. In this paper, we introduce TestBench, a benchmark for class-level LLM-based test case generation. We construct a dataset of 108 Java programs from 9 real-world, large-scale projects on GitHub, each representing a different thematic domain. We then design three distinct types of prompts based on context descriptions, including self-contained context, full context, and simple context. Besides, we propose a fine-grained evaluation framework that considers five aspects of test cases: syntactic correctness, compilation correctness, test correctness, code coverage rate, and defect detection rate. Furthermore, we propose a heuristic algorithm to repair erroneous test cases generated by LLMs. We evaluate CodeLlama-13b, GPT-3.5, and GPT-4 on the TestBench, and our experimental results indicate that larger models demonstrate a greater ability to effectively utilize contextual information, thus generating higher-quality test cases. Smaller models may struggle with the noise introduced by the extensive information contained within the full context. However, when using the simplified version, namely the simple context, which is derived from the full context via abstract syntax tree analysis, the performance of these models improves significantly. Our analysis highlights the current progress and pinpoints future directions to further enhance the effectiveness of models by handling contextual information for test case generation.

  • 6 authors
·
Sep 26, 2024

Rethinking Verification for LLM Code Generation: From Generation to Testing

Large language models (LLMs) have recently achieved notable success in code-generation benchmarks such as HumanEval and LiveCodeBench. However, a detailed examination reveals that these evaluation suites often comprise only a limited number of homogeneous test cases, resulting in subtle faults going undetected. This not only artificially inflates measured performance but also compromises accurate reward estimation in reinforcement learning frameworks utilizing verifiable rewards (RLVR). To address these critical shortcomings, we systematically investigate the test-case generation (TCG) task by proposing multi-dimensional metrics designed to rigorously quantify test-suite thoroughness. Furthermore, we introduce a human-LLM collaborative method (SAGA), leveraging human programming expertise with LLM reasoning capability, aimed at significantly enhancing both the coverage and the quality of generated test cases. In addition, we develop a TCGBench to facilitate the study of the TCG task. Experiments show that SAGA achieves a detection rate of 90.62% and a verifier accuracy of 32.58% on TCGBench. The Verifier Accuracy (Verifier Acc) of the code generation evaluation benchmark synthesized by SAGA is 10.78% higher than that of LiveCodeBench-v6. These results demonstrate the effectiveness of our proposed method. We hope this work contributes to building a scalable foundation for reliable LLM code evaluation, further advancing RLVR in code generation, and paving the way for automated adversarial test synthesis and adaptive benchmark integration.

  • 7 authors
·
Jul 9, 2025 1

AgentCoder: Multi-Agent-based Code Generation with Iterative Testing and Optimisation

The advancement of natural language processing (NLP) has been significantly boosted by the development of transformer-based large language models (LLMs). These models have revolutionized NLP tasks, particularly in code generation, aiding developers in creating software with enhanced efficiency. Despite their advancements, challenges in balancing code snippet generation with effective test case generation and execution persist. To address these issues, this paper introduces Multi-Agent Assistant Code Generation (AgentCoder), a novel solution comprising a multi-agent framework with specialized agents: the programmer agent, the test designer agent, and the test executor agent. During the coding procedure, the programmer agent will focus on the code generation and refinement based on the test executor agent's feedback. The test designer agent will generate test cases for the generated code, and the test executor agent will run the code with the test cases and write the feedback to the programmer. This collaborative system ensures robust code generation, surpassing the limitations of single-agent models and traditional methodologies. Our extensive experiments on 9 code generation models and 12 enhancement approaches showcase AgentCoder's superior performance over existing code generation models and prompt engineering techniques across various benchmarks. For example, AgentCoder achieves 77.4% and 89.1% pass@1 in HumanEval-ET and MBPP-ET with GPT-3.5, while SOTA baselines obtain only 69.5% and 63.0%.

  • 5 authors
·
Dec 20, 2023 1

COFFE: A Code Efficiency Benchmark for Code Generation

Code generation has largely improved development efficiency in the era of large language models (LLMs). With the ability to follow instructions, current LLMs can be prompted to generate code solutions given detailed descriptions in natural language. Many research efforts are being devoted to improving the correctness of LLM-generated code, and many benchmarks are proposed to evaluate the correctness comprehensively. Despite the focus on correctness, the time efficiency of LLM-generated code solutions is under-explored. Current correctness benchmarks are not suitable for time efficiency evaluation since their test cases cannot well distinguish the time efficiency of different code solutions. Besides, the current execution time measurement is not stable and comprehensive, threatening the validity of the time efficiency evaluation. To address the challenges in the time efficiency evaluation of code generation, we propose COFFE, a code generation benchmark for evaluating the time efficiency of LLM-generated code solutions. COFFE contains 398 and 358 problems for function-level and file-level code generation, respectively. To improve the distinguishability, we design a novel stressful test case generation approach with contracts and two new formats of test cases to improve the accuracy of generation. For the time evaluation metric, we propose efficienct@k based on CPU instruction count to ensure a stable and solid comparison between different solutions. We evaluate 14 popular LLMs on COFFE and identify four findings. Based on the findings, we draw some implications for LLM researchers and software practitioners to facilitate future research and usage of LLMs in code generation.

  • 4 authors
·
Feb 4, 2025

From Accidents to Insights: Leveraging Multimodal Data for Scenario-Driven ADS Testing

The rapid advancements in Autonomous Driving Systems (ADS) have necessitated robust software testing to ensure safety and reliability. However, automating the generation of scalable and concrete test scenarios remains a significant challenge. Current scenario-based test case generation methods often face limitations, such as unrealistic scenes and inaccurate vehicle trajectories. These challenges largely result from the loss of map information during data extraction and the lack of an effective verification mechanism to mitigate hallucinations in large language models (LLMs). This paper introduces TRACE, a scenario-based ADS Test case Generation framework for Critical Scenarios. By leveraging multimodal data to extract challenging scenarios from real-world car crash reports, TRACE constructs numerous critical test cases with less data, significantly enhancing ADS bug detection efficiency. Using in-context learning, chain-of-thought prompting, and self-validation approaches, we use LLMs to extract environmental and road network information from crash reports. For vehicle trajectory planning, data containing map information and vehicle coordinates serves as a knowledge base to build a ChatGPT-based LLM with path-planning capabilities, which we named TrackMate. Based on 50 existing crash reports, our approach successfully tested three ADS models across two simulation platforms, MetaDrive and BeamNG. Of the 290 constructed test scenarios, 127 are identified as critical, as they resulted in vehicle collisions. Additionally, user feedback reveals that TRACE demonstrates superior scenario reconstruction accuracy, with 77.5% of the scenarios being rated as 'mostly or 'totally' consistent, compared to only 27% for the most related SOTA, LCTGen.

  • 4 authors
·
Feb 4, 2025

On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective

Generative Foundation Models (GenFMs) have emerged as transformative tools. However, their widespread adoption raises critical concerns regarding trustworthiness across dimensions. This paper presents a comprehensive framework to address these challenges through three key contributions. First, we systematically review global AI governance laws and policies from governments and regulatory bodies, as well as industry practices and standards. Based on this analysis, we propose a set of guiding principles for GenFMs, developed through extensive multidisciplinary collaboration that integrates technical, ethical, legal, and societal perspectives. Second, we introduce TrustGen, the first dynamic benchmarking platform designed to evaluate trustworthiness across multiple dimensions and model types, including text-to-image, large language, and vision-language models. TrustGen leverages modular components--metadata curation, test case generation, and contextual variation--to enable adaptive and iterative assessments, overcoming the limitations of static evaluation methods. Using TrustGen, we reveal significant progress in trustworthiness while identifying persistent challenges. Finally, we provide an in-depth discussion of the challenges and future directions for trustworthy GenFMs, which reveals the complex, evolving nature of trustworthiness, highlighting the nuanced trade-offs between utility and trustworthiness, and consideration for various downstream applications, identifying persistent challenges and providing a strategic roadmap for future research. This work establishes a holistic framework for advancing trustworthiness in GenAI, paving the way for safer and more responsible integration of GenFMs into critical applications. To facilitate advancement in the community, we release the toolkit for dynamic evaluation.

  • 66 authors
·
Feb 20, 2025 2

EmergentTTS-Eval: Evaluating TTS Models on Complex Prosodic, Expressiveness, and Linguistic Challenges Using Model-as-a-Judge

Text-to-Speech (TTS) benchmarks often fail to capture how well models handle nuanced and semantically complex text. Building on EmergentTTS, we introduce EmergentTTS-Eval, a comprehensive benchmark covering six challenging TTS scenarios: emotions, paralinguistics, foreign words, syntactic complexity, complex pronunciation (e.g. URLs, formulas), and questions. Crucially, our framework automates both test-case generation and evaluation, making the benchmark easily extensible. Starting from a small set of human-written seed prompts, we iteratively extend them using LLMs to target specific structural, phonetic and prosodic challenges, resulting in 1,645 diverse test cases. Moreover, we employ a model-as-a-judge approach, using a Large Audio Language Model (LALM) to assess the speech across multiple dimensions such as expressed emotion, prosodic, intonational, and pronunciation accuracy. We evaluate state-of-the-art open-source and proprietary TTS systems, such as 11Labs, Deepgram, and OpenAI's 4o-mini-TTS, on EmergentTTS-Eval, demonstrating its ability to reveal fine-grained performance differences. Results show that the model-as-a-judge approach offers robust TTS assessment and a high correlation with human preferences. We open source the evaluation https://github.com/boson-ai/EmergentTTS-Eval-public{code} and the https://huggingface.co/datasets/bosonai/EmergentTTS-Eval{dataset}.

  • 5 authors
·
May 28, 2025 2

Pitfalls in Language Models for Code Intelligence: A Taxonomy and Survey

Modern language models (LMs) have been successfully employed in source code generation and understanding, leading to a significant increase in research focused on learning-based code intelligence, such as automated bug repair, and test case generation. Despite their great potential, language models for code intelligence (LM4Code) are susceptible to potential pitfalls, which hinder realistic performance and further impact their reliability and applicability in real-world deployment. Such challenges drive the need for a comprehensive understanding - not just identifying these issues but delving into their possible implications and existing solutions to build more reliable language models tailored to code intelligence. Based on a well-defined systematic research approach, we conducted an extensive literature review to uncover the pitfalls inherent in LM4Code. Finally, 67 primary studies from top-tier venues have been identified. After carefully examining these studies, we designed a taxonomy of pitfalls in LM4Code research and conducted a systematic study to summarize the issues, implications, current solutions, and challenges of different pitfalls for LM4Code systems. We developed a comprehensive classification scheme that dissects pitfalls across four crucial aspects: data collection and labeling, system design and learning, performance evaluation, and deployment and maintenance. Through this study, we aim to provide a roadmap for researchers and practitioners, facilitating their understanding and utilization of LM4Code in reliable and trustworthy ways.

  • 8 authors
·
Oct 27, 2023

Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming

The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.

  • 9 authors
·
Feb 21, 2024 1