new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

DrivAerNet: A Parametric Car Dataset for Data-Driven Aerodynamic Design and Graph-Based Drag Prediction

This study introduces DrivAerNet, a large-scale high-fidelity CFD dataset of 3D industry-standard car shapes, and RegDGCNN, a dynamic graph convolutional neural network model, both aimed at aerodynamic car design through machine learning. DrivAerNet, with its 4000 detailed 3D car meshes using 0.5 million surface mesh faces and comprehensive aerodynamic performance data comprising of full 3D pressure, velocity fields, and wall-shear stresses, addresses the critical need for extensive datasets to train deep learning models in engineering applications. It is 60\% larger than the previously available largest public dataset of cars, and is the only open-source dataset that also models wheels and underbody. RegDGCNN leverages this large-scale dataset to provide high-precision drag estimates directly from 3D meshes, bypassing traditional limitations such as the need for 2D image rendering or Signed Distance Fields (SDF). By enabling fast drag estimation in seconds, RegDGCNN facilitates rapid aerodynamic assessments, offering a substantial leap towards integrating data-driven methods in automotive design. Together, DrivAerNet and RegDGCNN promise to accelerate the car design process and contribute to the development of more efficient vehicles. To lay the groundwork for future innovations in the field, the dataset and code used in our study are publicly accessible at https://github.com/Mohamedelrefaie/DrivAerNet

  • 3 authors
·
Mar 12, 2024

Solving Navier-Stokes Equations Using Data-free Physics-Informed Neural Networks With Hard Boundary Conditions

In recent years, Physics-Informed Neural Networks (PINNs) have emerged as a powerful and robust framework for solving nonlinear differential equations across a wide range of scientific and engineering disciplines, including biology, geophysics, astrophysics and fluid dynamics. In the PINN framework, the governing partial differential equations, along with initial and boundary conditions, are encoded directly into the loss function, enabling the network to learn solutions that are consistent with the underlying physics. In this work, we employ the PINN framework to solve the dimensionless Navier-Stokes equations for three two-dimensional incompressible, steady, laminar flow problems without using any labeled data. The boundary and initial conditions are enforced in a hard manner, ensuring they are satisfied exactly rather than penalized during training. We validate the PINN predicted velocity profiles, drag coefficients and pressure profiles against the conventional computational fluid dynamics (CFD) simulations for moderate to high values of Reynolds number (Re). It is observed that the PINN predictions show good agreement with the CFD results at lower Re. We also extend our analysis to a transient condition and find that our method is equally capable of simulating complex time-dependent flow dynamics. To quantitatively assess the accuracy, we compute the L_2 normalized error, which lies in the range O(10^{-4}) - O(10^{-1}) for our chosen case studies.

  • 4 authors
·
Nov 18, 2025