""" Cognitive Proxy - Brain-Steered Language Model Hugging Face Spaces deployment Author: Sandro Andric """ import gradio as gr import torch import torch.nn as nn import numpy as np import pickle import os from pathlib import Path from sklearn.decomposition import PCA from transformers import AutoTokenizer, AutoModelForCausalLM import plotly.graph_objects as go import plotly.express as px import spaces # For ZeroGPU on Hugging Face # --- CONFIG --- import os from pathlib import Path # Get the directory of this script SCRIPT_DIR = Path(__file__).parent if __file__ else Path.cwd() # Try multiple possible locations for the model files if (SCRIPT_DIR / "results" / "final_atlas_256_vocab.pkl").exists(): ATLAS_PATH = str(SCRIPT_DIR / "results" / "final_atlas_256_vocab.pkl") ADAPTER_PATH = str(SCRIPT_DIR / "results" / "tinyllama_adapter_direct.pt") elif (SCRIPT_DIR / "final_atlas_256_vocab.pkl").exists(): ATLAS_PATH = str(SCRIPT_DIR / "final_atlas_256_vocab.pkl") ADAPTER_PATH = str(SCRIPT_DIR / "tinyllama_adapter_direct.pt") else: # Fallback to expected location ATLAS_PATH = "results/final_atlas_256_vocab.pkl" ADAPTER_PATH = "results/tinyllama_adapter_direct.pt" print(f"Atlas path: {ATLAS_PATH}") print(f"Adapter path: {ADAPTER_PATH}") MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # --- ADAPTER CLASS --- class TinyLlamaAdapterDirect(nn.Module): def __init__(self, input_dim=2048, hidden_dim=1024, output_dim=65536): super().__init__() self.net = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.GELU(), nn.Dropout(0.1), nn.Linear(hidden_dim, hidden_dim), nn.LayerNorm(hidden_dim), nn.GELU(), nn.Dropout(0.1), nn.Linear(hidden_dim, hidden_dim // 2), nn.LayerNorm(hidden_dim // 2), nn.GELU(), nn.Linear(hidden_dim // 2, output_dim), ) def forward(self, x): return self.net(x) # Global system cache system = None def load_system(): global system if system is not None: return system device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) tokenizer.pad_token = tokenizer.eos_token # Use float32 for CPU, float16 for GPU dtype = torch.float16 if torch.cuda.is_available() else torch.float32 try: # Try new parameter name first model = AutoModelForCausalLM.from_pretrained(MODEL_ID, dtype=dtype).to(device) except TypeError: # Fall back to old parameter name model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=dtype).to(device) model.eval() adapter = TinyLlamaAdapterDirect().to(device).to(dtype) if os.path.exists(ADAPTER_PATH): adapter.load_state_dict(torch.load(ADAPTER_PATH, map_location=device, weights_only=True)) adapter.eval() if os.path.exists(ATLAS_PATH): print(f"Loading atlas from {ATLAS_PATH}") with open(ATLAS_PATH, 'rb') as f: data = pickle.load(f) if isinstance(data, dict): print(f"Atlas data keys: {list(data.keys())[:5]}") if 'means' in data: atlas = data['means'] print(f"Using 'means' key, got {len(atlas) if isinstance(atlas, dict) else 'not a dict'} items") else: atlas = data print(f"Using data directly, got {len(atlas) if isinstance(atlas, dict) else 'not a dict'} items") else: atlas = data print(f"Atlas is not a dict, type: {type(data)}") else: print(f"Atlas file not found at {ATLAS_PATH}") atlas = {} # Ensure atlas is valid if not atlas or not isinstance(atlas, dict): print(f"Warning: Atlas is empty or invalid, using fallback") atlas = {'word1': np.random.randn(256, 256), 'word2': np.random.randn(256, 256)} words = list(atlas.keys()) print(f"Loaded atlas with {len(words)} words") if len(words) < 2: print(f"Warning: Not enough words in atlas ({len(words)}), using fallback") atlas = {'word1': np.random.randn(256, 256), 'word2': np.random.randn(256, 256)} words = list(atlas.keys()) # Handle both 256x256 and flat arrays first_val = np.array(atlas[words[0]]) if first_val.shape == (256, 256): plv_matrix = np.array([np.array(atlas[w]).flatten() for w in words]) else: plv_matrix = np.array([np.array(atlas[w]) for w in words]) # Ensure matrix is 2D if len(plv_matrix.shape) == 1 or plv_matrix.shape[0] < 2: print(f"Warning: Invalid PLV matrix shape {plv_matrix.shape}, using fallback") plv_matrix = np.random.randn(10, 65536) pca = PCA(n_components=min(10, plv_matrix.shape[0] - 1)) pca.fit(plv_matrix) pc1_axis = pca.components_[0] pc1_axis = pc1_axis / np.linalg.norm(pc1_axis) global_mean = plv_matrix.mean(axis=0) system = { 'model': model, 'tokenizer': tokenizer, 'adapter': adapter, 'axis': torch.tensor(pc1_axis, dtype=torch.float32).to(device), 'global_mean': torch.tensor(global_mean, dtype=torch.float32).to(device), 'device': device } return system @spaces.GPU(duration=60) def generate_variants(prompt, scenario, max_tokens): """Generate all three variants""" sys = load_system() if scenario == "Educational": prompt_formatted = f"<|user|>\n{prompt}\n<|assistant|>\n" alpha_strength = 5.0 elif scenario == "Technical writing": prompt_formatted = f"<|user|>\n{prompt}\n<|assistant|>\n" alpha_strength = 5.0 else: prompt_formatted = prompt alpha_strength = 3.0 outputs = [] for alpha in [-alpha_strength, 0, alpha_strength]: inputs = sys['tokenizer'](prompt_formatted, return_tensors='pt').to(sys['device']) generated_ids = inputs.input_ids.clone() for _ in range(max_tokens): outputs_model = sys['model'](generated_ids, output_hidden_states=True) hidden = outputs_model.hidden_states[-1][:, -1, :] # Ensure proper dtype for adapter adapter_dtype = next(sys['adapter'].parameters()).dtype hidden = hidden.to(adapter_dtype) if alpha != 0: hidden = hidden.detach().requires_grad_(True) plv_pred = sys['adapter'](hidden) score = torch.sum(plv_pred * sys['axis'].to(adapter_dtype)) grad = torch.autograd.grad(score, hidden, retain_graph=False)[0] grad = grad / (grad.norm() + 1e-8) hidden = hidden.detach() + alpha * grad.detach() with torch.no_grad(): logits = sys['model'].lm_head(sys['model'].model.norm(hidden)) probs = torch.softmax(logits / 0.8, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_ids = torch.cat([generated_ids, next_token], dim=-1) if next_token.item() == sys['tokenizer'].eos_token_id: break text = sys['tokenizer'].decode(generated_ids[0], skip_special_tokens=True) if "<|assistant|>" in text: text = text.split("<|assistant|>")[-1].strip() outputs.append(text) return outputs[0], outputs[1], outputs[2] @spaces.GPU(duration=30) def analyze_text(text): """Analyze text and return score with visualization""" sys = load_system() with torch.no_grad(): inputs = sys['tokenizer'](text, return_tensors='pt').to(sys['device']) out = sys['model'](**inputs, output_hidden_states=True) last_hidden = out.hidden_states[-1][0, -1, :] # Ensure proper dtype for adapter adapter_dtype = next(sys['adapter'].parameters()).dtype last_hidden = last_hidden.to(adapter_dtype) plv_pred = sys['adapter'](last_hidden.unsqueeze(0)) plv_flat = plv_pred[0] plv_centered = plv_flat - sys['global_mean'].to(adapter_dtype) score = (plv_centered * sys['axis'].to(adapter_dtype)).sum().item() # Create minimal gauge like Streamlit gauge_min = min(-300, score - 50) gauge_max = max(300, score + 50) fig = go.Figure(go.Indicator( mode="number+gauge", value=score, gauge={ 'shape': "angular", 'axis': {'range': [gauge_min, gauge_max], 'tickwidth': 0.5, 'tickcolor': '#ccc'}, 'bar': {'color': "#333", 'thickness': 0.15}, 'bgcolor': "white", 'borderwidth': 1, 'bordercolor': "#e0e0e0", 'steps': [ {'range': [gauge_min, -5], 'color': "#e8f5e9"}, {'range': [-5, 5], 'color': "#fafafa"}, {'range': [5, gauge_max], 'color': "#fff3e0"} ], }, number={'font': {'size': 36, 'color': '#000'}} )) fig.update_layout( height=300, width=400, margin={'l': 30, 'r': 30, 't': 50, 'b': 30}, paper_bgcolor='white', font={'color': '#666'} ) if score > 5: interpretation = "**Syntactic dominance** \nText patterns match brain activity during grammatical processing" elif score < -5: interpretation = "**Semantic dominance** \nText patterns match brain activity during meaning comprehension" else: interpretation = "**Balanced** \nMixed patterns - both structure and meaning equally present" # Create PLV matrix heatmap (reshape to 256x256) plv_np = plv_pred[0].cpu().numpy() plv_matrix = plv_np[:65536].reshape(256, 256) fig_plv = px.imshow( plv_matrix, color_continuous_scale='Viridis', aspect='auto' ) fig_plv.update_layout( coloraxis_showscale=True, coloraxis=dict( colorbar=dict( thickness=10, len=0.7, title=dict(text="Synchrony", side="right"), tickfont=dict(size=10) ) ), margin={'l': 0, 'r': 40, 't': 10, 'b': 0}, height=300 ) fig_plv.update_xaxes(visible=False) fig_plv.update_yaxes(visible=False) return fig, interpretation, score, fig_plv @spaces.GPU(duration=60) def generate_steered(prompt, alpha, max_tokens): """Generate with custom steering""" sys = load_system() inputs = sys['tokenizer'](prompt, return_tensors='pt').to(sys['device']) generated_ids = inputs.input_ids.clone() for _ in range(max_tokens): outputs_model = sys['model'](generated_ids, output_hidden_states=True) hidden = outputs_model.hidden_states[-1][:, -1, :] # Ensure proper dtype for adapter adapter_dtype = next(sys['adapter'].parameters()).dtype hidden = hidden.to(adapter_dtype) if alpha != 0: hidden = hidden.detach().requires_grad_(True) plv_pred = sys['adapter'](hidden) score = torch.sum(plv_pred * sys['axis'].to(adapter_dtype)) grad = torch.autograd.grad(score, hidden, retain_graph=False)[0] grad = grad / (grad.norm() + 1e-8) hidden = hidden.detach() + alpha * grad.detach() with torch.no_grad(): logits = sys['model'].lm_head(sys['model'].model.norm(hidden)) probs = torch.softmax(logits / 0.8, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_ids = torch.cat([generated_ids, next_token], dim=-1) if next_token.item() == sys['tokenizer'].eos_token_id: break return sys['tokenizer'].decode(generated_ids[0], skip_special_tokens=True) # Custom CSS to match Streamlit minimal design custom_css = """ /* @import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600&display=swap'); */ /* Global font */ .gradio-container, .gradio-container * { font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif !important; } /* Clean header */ .main-header { font-size: 14px; font-weight: 300; letter-spacing: 2px; text-transform: uppercase; color: #666; margin-bottom: 8px; } .main-title { font-size: 48px; font-weight: 300; line-height: 1.1; letter-spacing: -1px; margin-bottom: 16px; } .subtitle { font-size: 18px; font-weight: 300; color: #666; line-height: 1.6; } /* Clean tabs like Streamlit */ .tabs { border-bottom: 1px solid #e0e0e0 !important; } .tab-nav button { background: none !important; border: none !important; border-bottom: 2px solid transparent !important; color: #666 !important; font-weight: 400 !important; font-size: 14px !important; padding: 8px 16px !important; text-transform: none !important; } .tab-nav button.selected { color: #000 !important; border-bottom-color: #000 !important; } /* Minimal buttons */ button.primary { background: white !important; border: 1px solid #000 !important; color: #000 !important; font-weight: 400 !important; padding: 10px 20px !important; transition: all 0.2s !important; } button.primary:hover { background: #000 !important; color: white !important; } /* Clean textboxes */ textarea, input[type="text"] { border: 1px solid #e0e0e0 !important; border-radius: 0 !important; font-size: 14px !important; } /* Section titles */ .section-title { font-size: 11px; font-weight: 500; letter-spacing: 1.5px; text-transform: uppercase; color: #999; margin: 24px 0 16px 0; } /* Value labels */ .value-label { font-size: 12px; color: #999; margin-bottom: 4px; } /* Remove gradio branding */ footer { display: none !important; } .dark { display: none !important; } """ # Create interface with gr.Blocks(title="Cognitive Proxy") as demo: # Header gr.HTML("""
Neural Language Interface
Cognitive Proxy
Steering language models through brain-derived coordinate spaces.
Using MEG phase-locking patterns from 21 subjects as control geometry.
Sandro Andric
Demo model: TinyLlama-1.1B-Chat
""") # How it works expander with gr.Accordion("How this works", open=False): gr.Markdown(""" **What makes this special:** This AI is controlled by real human brain data. We recorded brain activity from 21 people listening to stories, discovered how their brains organize language, and now use those patterns to steer what the AI generates. **Try this:** 1. Start with the **Compare** tab and choose **Educational** 2. Click "Generate all variants" to see three versions side by side 3. Notice how the left (concrete) version uses analogies while the right (abstract) uses logic 4. The difference comes from steering along brain axes discovered from MEG recordings **The science:** Different brain regions activate for grammar vs meaning. We project the AI's internal states into this brain coordinate system and steer along the axis. """) with gr.Tabs(): # Compare Tab with gr.TabItem("Compare"): gr.HTML('
Comparative Analysis
') gr.Markdown(""" See how brain steering affects AI output. Try **Educational** to see the difference between abstract explanations vs concrete analogies, or **Technical writing** to compare formal vs friendly tones. All controlled by brain patterns from 21 human subjects. """) with gr.Row(): scenario = gr.Dropdown( choices=["Educational", "Technical writing", "Free form"], value="Educational", label="Scenario", container=False ) prompt = gr.Textbox( value="Explain quantum entanglement in simple terms.", label="", placeholder="Enter your prompt...", lines=4 ) with gr.Row(): max_tokens = gr.Slider(20, 150, 80, label="Max tokens", container=False) generate_btn = gr.Button("Generate all variants", variant="primary") gr.HTML('
') with gr.Row(): with gr.Column(): gr.HTML('
Concrete / Analogies
') output_semantic = gr.Textbox( label="", lines=10, interactive=False, container=False ) gr.Markdown("*Steered toward meaning patterns*", elem_classes=["caption"]) with gr.Column(): gr.HTML('
Baseline
') output_baseline = gr.Textbox( label="", lines=10, interactive=False, container=False ) gr.Markdown("*No brain steering*", elem_classes=["caption"]) with gr.Column(): gr.HTML('
Abstract / Logical
') output_syntactic = gr.Textbox( label="", lines=10, interactive=False, container=False ) gr.Markdown("*Steered toward structure patterns*", elem_classes=["caption"]) generate_btn.click( generate_variants, inputs=[prompt, scenario, max_tokens], outputs=[output_semantic, output_baseline, output_syntactic] ) # Inspect Tab with gr.TabItem("Inspect"): gr.HTML('
Brain Space Projection
') gr.Markdown(""" Enter any text to see how it aligns with brain patterns. The meter shows whether your text activates brain regions associated with grammar/structure (positive) or meaning/content (negative). """) with gr.Row(): with gr.Column(): text_input = gr.Textbox( value="The scientist discovered", label="", placeholder="Enter text to analyze...", lines=6 ) analyze_btn = gr.Button("Project", variant="primary") with gr.Column(): gauge_plot = gr.Plot(label="") interpretation = gr.Markdown("") with gr.Accordion("What the number means", open=False): gr.Markdown(""" - **Negative values (green)** = semantic/meaning focus - **Positive values (amber)** = syntactic/grammar focus - **Larger magnitude** = stronger pattern - **Range** typically -300 to +300 """) with gr.Accordion("View brain connectivity pattern", open=False): gr.Markdown(""" Phase-Locking Value (PLV) shows how synchronized different brain regions are. Brighter colors = stronger synchronization between sensor pairs. Each pixel represents connectivity between two of 256 MEG sensors. """) plv_plot = gr.Plot(label="") def analyze_text_wrapper(text): fig, interp, _, fig_plv = analyze_text(text) return fig, interp, fig_plv analyze_btn.click( analyze_text_wrapper, inputs=[text_input], outputs=[gauge_plot, interpretation, plv_plot] ) # Steer Tab with gr.TabItem("Steer"): gr.HTML('
Neural Steering
') with gr.Row(): with gr.Column(scale=2): prompt_steer = gr.Textbox( value="The scientist discovered", label="", placeholder="Enter prompt...", lines=5 ) with gr.Column(scale=1): gr.HTML('
Tokens
') tokens_steer = gr.Slider(20, 150, 60, label="", container=False) gr.HTML('
Alpha
') alpha_steer = gr.Slider(-5.0, 5.0, 0.0, 0.5, label="", container=False) gr.Markdown("*negative → semantic | positive → syntactic*", elem_classes=["caption"]) steer_btn = gr.Button("Generate", variant="primary") gr.HTML('
Output
') output_steer = gr.Textbox(label="", lines=8, interactive=False, container=False) steer_btn.click( generate_steered, inputs=[prompt_steer, alpha_steer, tokens_steer], outputs=[output_steer] ) # Footer gr.HTML("""
© 2025 Sandro Andric | Ainthusiast.com
""") demo.launch( theme=gr.themes.Base( primary_hue="gray", neutral_hue="gray", text_size="md", spacing_size="lg", radius_size="none", ), css=custom_css, ssr_mode=False )