File size: 4,767 Bytes
4d76db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Simple FastAPI Resume-JD Scorer
Accepts PDF resumes and job description, returns scored results
"""

from fastapi import FastAPI, File, UploadFile, Form, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from typing import List
import uvicorn
import os
import tempfile
import shutil

# Import scoring utilities
from utils.scorer import ResumeScorer
from utils.pdf_processor import extract_text_from_pdf

# Initialize FastAPI app
app = FastAPI()

# Enable CORS for frontend
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Global scorer instance
scorer = None

@app.on_event("startup")
async def startup_event():
    """Load ML model on startup"""
    global scorer
    print("βš™οΈ Loading InstructorXL model (this may take 2-3 minutes)...")
    scorer = ResumeScorer()
    print("βœ… Model loaded successfully!")

@app.get("/health")
async def health():
    """Health check endpoint"""
    return {
        "status": "healthy",
        "model_loaded": scorer is not None
    }

@app.post("/score")
async def score_resumes(
    job_description: str = Form(...),
    resumes: List[UploadFile] = File(...)
):
    """
    Score resumes against job description
    
    Parameters:
    - job_description: Text of the job description
    - resumes: List of PDF files
    
    Returns:
    - Ranked list of resumes with scores
    """
    if not scorer:
        raise HTTPException(status_code=503, detail="Model not loaded yet")
    
    if not resumes:
        raise HTTPException(status_code=400, detail="No resumes provided")
    
    if len(job_description.strip()) < 50:
        raise HTTPException(status_code=400, detail="Job description too short")
    
    results = []
    temp_dir = tempfile.mkdtemp()
    
    try:
        print(f"πŸ“„ Processing {len(resumes)} resumes...")
        
        for idx, resume_file in enumerate(resumes, 1):
            print(f"  [{idx}/{len(resumes)}] Processing: {resume_file.filename}")
            
            # Validate PDF
            if not resume_file.filename.lower().endswith('.pdf'):
                results.append({
                    "resume_name": resume_file.filename,
                    "error": "Only PDF files supported",
                    "skills_score": 0.0,
                    "projects_score": 0.0,
                    "experience_score": 0.0,
                    "final_score": 0.0
                })
                continue
            
            try:
                # Save and extract PDF
                temp_path = os.path.join(temp_dir, resume_file.filename)
                content = await resume_file.read()
                
                with open(temp_path, 'wb') as f:
                    f.write(content)
                
                resume_text = extract_text_from_pdf(temp_path)
                
                if not resume_text or len(resume_text.strip()) < 100:
                    results.append({
                        "resume_name": resume_file.filename,
                        "error": "Could not extract text from PDF",
                        "skills_score": 0.0,
                        "projects_score": 0.0,
                        "experience_score": 0.0,
                        "final_score": 0.0
                    })
                    continue
                
                # Score resume
                score_result = scorer.score_resume(job_description, resume_text)
                score_result["resume_name"] = resume_file.filename
                results.append(score_result)
                print(f"  βœ“ Scored: {resume_file.filename} (final_score: {score_result['final_score']:.3f})")
                
            except Exception as e:
                print(f"❌ Error processing {resume_file.filename}: {str(e)}")
                results.append({
                    "resume_name": resume_file.filename,
                    "error": str(e),
                    "skills_score": 0.0,
                    "projects_score": 0.0,
                    "experience_score": 0.0,
                    "final_score": 0.0
                })
        
        # Sort by final score
        results.sort(key=lambda x: x.get("final_score", 0), reverse=True)
        
        print(f"βœ… Scoring complete!")
        
        return {
            "success": True,
            "total": len(resumes),
            "processed": len([r for r in results if "error" not in r]),
            "results": results
        }
        
    finally:
        # Cleanup
        shutil.rmtree(temp_dir, ignore_errors=True)

if __name__ == "__main__":
    uvicorn.run(
        "main:app",
        host="0.0.0.0",
        port=8000,
        reload=True
    )