""" Simple FastAPI Resume-JD Scorer Accepts PDF resumes and job description, returns scored results """ from fastapi import FastAPI, File, UploadFile, Form, HTTPException from fastapi.middleware.cors import CORSMiddleware from typing import List import uvicorn import os import tempfile import shutil # Import scoring utilities from utils.scorer import ResumeScorer from utils.pdf_processor import extract_text_from_pdf # Initialize FastAPI app app = FastAPI() # Enable CORS for frontend app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Global scorer instance scorer = None @app.on_event("startup") async def startup_event(): """Load ML model on startup""" global scorer print("⚙️ Loading InstructorXL model (this may take 2-3 minutes)...") scorer = ResumeScorer() print("✅ Model loaded successfully!") @app.get("/health") async def health(): """Health check endpoint""" return { "status": "healthy", "model_loaded": scorer is not None } @app.post("/score") async def score_resumes( job_description: str = Form(...), resumes: List[UploadFile] = File(...) ): """ Score resumes against job description Parameters: - job_description: Text of the job description - resumes: List of PDF files Returns: - Ranked list of resumes with scores """ if not scorer: raise HTTPException(status_code=503, detail="Model not loaded yet") if not resumes: raise HTTPException(status_code=400, detail="No resumes provided") if len(job_description.strip()) < 50: raise HTTPException(status_code=400, detail="Job description too short") results = [] temp_dir = tempfile.mkdtemp() try: print(f"📄 Processing {len(resumes)} resumes...") for idx, resume_file in enumerate(resumes, 1): print(f" [{idx}/{len(resumes)}] Processing: {resume_file.filename}") # Validate PDF if not resume_file.filename.lower().endswith('.pdf'): results.append({ "resume_name": resume_file.filename, "error": "Only PDF files supported", "skills_score": 0.0, "projects_score": 0.0, "experience_score": 0.0, "final_score": 0.0 }) continue try: # Save and extract PDF temp_path = os.path.join(temp_dir, resume_file.filename) content = await resume_file.read() with open(temp_path, 'wb') as f: f.write(content) resume_text = extract_text_from_pdf(temp_path) if not resume_text or len(resume_text.strip()) < 100: results.append({ "resume_name": resume_file.filename, "error": "Could not extract text from PDF", "skills_score": 0.0, "projects_score": 0.0, "experience_score": 0.0, "final_score": 0.0 }) continue # Score resume score_result = scorer.score_resume(job_description, resume_text) score_result["resume_name"] = resume_file.filename results.append(score_result) print(f" ✓ Scored: {resume_file.filename} (final_score: {score_result['final_score']:.3f})") except Exception as e: print(f"❌ Error processing {resume_file.filename}: {str(e)}") results.append({ "resume_name": resume_file.filename, "error": str(e), "skills_score": 0.0, "projects_score": 0.0, "experience_score": 0.0, "final_score": 0.0 }) # Sort by final score results.sort(key=lambda x: x.get("final_score", 0), reverse=True) print(f"✅ Scoring complete!") return { "success": True, "total": len(resumes), "processed": len([r for r in results if "error" not in r]), "results": results } finally: # Cleanup shutil.rmtree(temp_dir, ignore_errors=True) if __name__ == "__main__": uvicorn.run( "main:app", host="0.0.0.0", port=8000, reload=True )