Spaces:
Sleeping
Sleeping
Commit
ยท
42eafc4
1
Parent(s):
b37c0fc
Code fixing
Browse files
app.py
CHANGED
|
@@ -8,14 +8,20 @@ import os
|
|
| 8 |
import urllib.request
|
| 9 |
import torchaudio
|
| 10 |
from scipy.spatial.distance import cosine
|
|
|
|
|
|
|
| 11 |
import json
|
| 12 |
import io
|
| 13 |
import wave
|
| 14 |
-
|
| 15 |
|
| 16 |
# Simplified configuration parameters
|
| 17 |
SILENCE_THRESHS = [0, 0.4]
|
| 18 |
-
FINAL_TRANSCRIPTION_MODEL = "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
SILERO_SENSITIVITY = 0.4
|
| 20 |
WEBRTC_SENSITIVITY = 3
|
| 21 |
MIN_LENGTH_OF_RECORDING = 0.7
|
|
@@ -267,65 +273,12 @@ class SpeakerChangeDetector:
|
|
| 267 |
}
|
| 268 |
|
| 269 |
|
| 270 |
-
class DiarizationStreamHandler(AsyncStreamHandler):
|
| 271 |
-
"""FastRTC stream handler for real-time diarization"""
|
| 272 |
-
def __init__(self, diarization_system):
|
| 273 |
-
super().__init__(input_sample_rate=16000)
|
| 274 |
-
self.diarization_system = diarization_system
|
| 275 |
-
self.stt_model = get_stt_model(model=FINAL_TRANSCRIPTION_MODEL)
|
| 276 |
-
self.current_text = ""
|
| 277 |
-
self.current_audio_buffer = []
|
| 278 |
-
self.transcript_queue = queue.Queue()
|
| 279 |
-
|
| 280 |
-
def copy(self):
|
| 281 |
-
return DiarizationStreamHandler(self.diarization_system)
|
| 282 |
-
|
| 283 |
-
async def start_up(self):
|
| 284 |
-
"""Initialize the stream handler"""
|
| 285 |
-
pass
|
| 286 |
-
|
| 287 |
-
async def receive(self, frame):
|
| 288 |
-
"""Process incoming audio frame"""
|
| 289 |
-
# Extract audio data
|
| 290 |
-
sample_rate, audio_data = frame
|
| 291 |
-
|
| 292 |
-
# Convert to numpy array if needed
|
| 293 |
-
if isinstance(audio_data, torch.Tensor):
|
| 294 |
-
audio_data = audio_data.numpy()
|
| 295 |
-
|
| 296 |
-
# Add to buffer
|
| 297 |
-
self.current_audio_buffer.append(audio_data)
|
| 298 |
-
|
| 299 |
-
# If buffer is large enough, process it
|
| 300 |
-
if len(self.current_audio_buffer) > 3: # Process ~1.5 seconds of audio
|
| 301 |
-
# Concatenate audio data
|
| 302 |
-
combined_audio = np.concatenate(self.current_audio_buffer)
|
| 303 |
-
|
| 304 |
-
# Run speech-to-text
|
| 305 |
-
text = self.stt_model.stt((16000, combined_audio))
|
| 306 |
-
|
| 307 |
-
if text and text.strip():
|
| 308 |
-
# Save text and audio for processing
|
| 309 |
-
self.transcript_queue.put((text, combined_audio))
|
| 310 |
-
self.current_text = text
|
| 311 |
-
|
| 312 |
-
# Reset buffer but keep some overlap
|
| 313 |
-
if len(self.current_audio_buffer) > 5:
|
| 314 |
-
self.current_audio_buffer = self.current_audio_buffer[-2:]
|
| 315 |
-
|
| 316 |
-
async def emit(self):
|
| 317 |
-
"""Emit processed data"""
|
| 318 |
-
# Return current text as dummy; actual processing is done in background
|
| 319 |
-
return self.current_text
|
| 320 |
-
|
| 321 |
-
|
| 322 |
class RealtimeSpeakerDiarization:
|
| 323 |
def __init__(self):
|
| 324 |
self.encoder = None
|
| 325 |
self.audio_processor = None
|
| 326 |
self.speaker_detector = None
|
| 327 |
-
self.
|
| 328 |
-
self.stream_handler = None
|
| 329 |
self.sentence_queue = queue.Queue()
|
| 330 |
self.full_sentences = []
|
| 331 |
self.sentence_speakers = []
|
|
@@ -335,6 +288,7 @@ class RealtimeSpeakerDiarization:
|
|
| 335 |
self.is_running = False
|
| 336 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 337 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
|
|
|
| 338 |
|
| 339 |
def initialize_models(self):
|
| 340 |
"""Initialize the speaker encoder model"""
|
|
@@ -361,69 +315,45 @@ class RealtimeSpeakerDiarization:
|
|
| 361 |
print(f"Model initialization error: {e}")
|
| 362 |
return False
|
| 363 |
|
| 364 |
-
def
|
| 365 |
-
"""
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
# Create FastRTC stream
|
| 374 |
-
self.stream = Stream(
|
| 375 |
-
handler=self.stream_handler,
|
| 376 |
-
modality="audio",
|
| 377 |
-
mode="send-receive"
|
| 378 |
)
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
# Start diarization processor thread
|
| 389 |
-
self.diarization_thread = threading.Thread(target=self.process_transcript_queue, daemon=True)
|
| 390 |
-
self.diarization_thread.start()
|
| 391 |
-
|
| 392 |
-
return "Stream started successfully! Ready for audio input."
|
| 393 |
-
|
| 394 |
-
except Exception as e:
|
| 395 |
-
return f"Error starting stream: {e}"
|
| 396 |
|
| 397 |
-
def
|
| 398 |
-
"""Process
|
| 399 |
-
|
|
|
|
| 400 |
try:
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
# Add to sentence queue for diarization
|
| 405 |
-
self.pending_sentences.append(text)
|
| 406 |
-
self.sentence_queue.put((text, audio_data))
|
| 407 |
-
except queue.Empty:
|
| 408 |
-
time.sleep(0.1) # Short sleep to prevent CPU hogging
|
| 409 |
except Exception as e:
|
| 410 |
-
print(f"Error processing
|
| 411 |
-
time.sleep(0.5) # Slightly longer sleep on error
|
| 412 |
|
| 413 |
def process_sentence_queue(self):
|
| 414 |
"""Process sentences in the queue for speaker detection"""
|
| 415 |
while self.is_running:
|
| 416 |
try:
|
| 417 |
-
text,
|
| 418 |
|
| 419 |
# Convert audio data to int16
|
| 420 |
-
|
| 421 |
-
if audio_data.dtype != np.int16:
|
| 422 |
-
audio_int16 = (audio_data * 32767).astype(np.int16)
|
| 423 |
-
else:
|
| 424 |
-
audio_int16 = audio_data
|
| 425 |
-
else:
|
| 426 |
-
audio_int16 = np.int16(audio_data * 32767)
|
| 427 |
|
| 428 |
# Extract speaker embedding
|
| 429 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
|
@@ -442,16 +372,73 @@ class RealtimeSpeakerDiarization:
|
|
| 442 |
# Remove from pending
|
| 443 |
if text in self.pending_sentences:
|
| 444 |
self.pending_sentences.remove(text)
|
|
|
|
|
|
|
|
|
|
| 445 |
|
| 446 |
except queue.Empty:
|
| 447 |
continue
|
| 448 |
except Exception as e:
|
| 449 |
print(f"Error processing sentence: {e}")
|
| 450 |
|
| 451 |
-
def
|
| 452 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
self.is_running = False
|
| 454 |
-
|
|
|
|
|
|
|
| 455 |
|
| 456 |
def clear_conversation(self):
|
| 457 |
"""Clear all conversation data"""
|
|
@@ -460,6 +447,7 @@ class RealtimeSpeakerDiarization:
|
|
| 460 |
self.pending_sentences = []
|
| 461 |
self.displayed_text = ""
|
| 462 |
self.last_realtime_text = ""
|
|
|
|
| 463 |
|
| 464 |
if self.speaker_detector:
|
| 465 |
self.speaker_detector = SpeakerChangeDetector(
|
|
@@ -491,6 +479,7 @@ class RealtimeSpeakerDiarization:
|
|
| 491 |
sentence_text, _ = sentence
|
| 492 |
if i >= len(self.sentence_speakers):
|
| 493 |
color = "#FFFFFF"
|
|
|
|
| 494 |
else:
|
| 495 |
speaker_id = self.sentence_speakers[i]
|
| 496 |
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
|
@@ -539,38 +528,130 @@ class RealtimeSpeakerDiarization:
|
|
| 539 |
except Exception as e:
|
| 540 |
return f"Error getting status: {e}"
|
| 541 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 542 |
|
| 543 |
# Global instance
|
| 544 |
diarization_system = RealtimeSpeakerDiarization()
|
| 545 |
|
| 546 |
|
| 547 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
def create_interface():
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
with app:
|
| 552 |
gr.Markdown("# ๐ค Real-time Speech Recognition with Speaker Diarization")
|
| 553 |
-
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding
|
| 554 |
|
| 555 |
with gr.Row():
|
| 556 |
with gr.Column(scale=2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 557 |
# Main conversation display
|
| 558 |
conversation_output = gr.HTML(
|
| 559 |
-
value="<i>Click 'Initialize System'
|
| 560 |
label="Live Conversation"
|
| 561 |
)
|
| 562 |
|
| 563 |
-
# FastRTC microphone widget for visualization only (the real audio comes through FastRTC stream)
|
| 564 |
-
audio_widget = gr.Audio(
|
| 565 |
-
label="๐๏ธ Microphone Input (Click Start Stream to enable)",
|
| 566 |
-
type="microphone"
|
| 567 |
-
)
|
| 568 |
-
|
| 569 |
# Control buttons
|
| 570 |
with gr.Row():
|
| 571 |
init_btn = gr.Button("๐ง Initialize System", variant="secondary")
|
| 572 |
-
start_btn = gr.Button("๐๏ธ Start
|
| 573 |
-
stop_btn = gr.Button("โน๏ธ Stop
|
| 574 |
clear_btn = gr.Button("๐๏ธ Clear Conversation", interactive=False)
|
| 575 |
|
| 576 |
# Status display
|
|
@@ -608,28 +689,12 @@ def create_interface():
|
|
| 608 |
gr.Markdown("## ๐ Instructions")
|
| 609 |
gr.Markdown("""
|
| 610 |
1. Click **Initialize System** to load models
|
| 611 |
-
2. Click **Start
|
| 612 |
-
3.
|
| 613 |
-
4.
|
| 614 |
-
5.
|
| 615 |
-
6.
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
# QR code for mobile access
|
| 619 |
-
gr.Markdown("## ๐ฑ Mobile Access")
|
| 620 |
-
gr.Markdown("Scan this QR code to access from mobile device:")
|
| 621 |
-
qr_code = gr.HTML("""
|
| 622 |
-
<div id="qrcode" style="text-align: center;"></div>
|
| 623 |
-
<script src="https://cdn.jsdelivr.net/npm/[email protected]/qrcode.min.js"></script>
|
| 624 |
-
<script>
|
| 625 |
-
setTimeout(function() {
|
| 626 |
-
var currentUrl = window.location.href;
|
| 627 |
-
var qr = qrcode(0, 'M');
|
| 628 |
-
qr.addData(currentUrl);
|
| 629 |
-
qr.make();
|
| 630 |
-
document.getElementById('qrcode').innerHTML = qr.createImgTag(5);
|
| 631 |
-
}, 1000);
|
| 632 |
-
</script>
|
| 633 |
""")
|
| 634 |
|
| 635 |
# Speaker color legend
|
|
@@ -639,10 +704,17 @@ def create_interface():
|
|
| 639 |
color_info.append(f'<span style="color:{color};">โ </span> Speaker {i+1} ({name})')
|
| 640 |
|
| 641 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 642 |
|
| 643 |
# Auto-refresh conversation and status
|
| 644 |
def refresh_display():
|
| 645 |
-
return get_formatted_conversation(),
|
| 646 |
|
| 647 |
# Event handlers
|
| 648 |
def on_initialize():
|
|
@@ -652,7 +724,7 @@ def create_interface():
|
|
| 652 |
result,
|
| 653 |
gr.update(interactive=True), # start_btn
|
| 654 |
gr.update(interactive=True), # clear_btn
|
| 655 |
-
|
| 656 |
get_status()
|
| 657 |
)
|
| 658 |
else:
|
|
@@ -660,58 +732,26 @@ def create_interface():
|
|
| 660 |
result,
|
| 661 |
gr.update(interactive=False), # start_btn
|
| 662 |
gr.update(interactive=False), # clear_btn
|
| 663 |
-
|
| 664 |
get_status()
|
| 665 |
)
|
| 666 |
|
| 667 |
-
def
|
| 668 |
-
result =
|
| 669 |
return (
|
| 670 |
result,
|
| 671 |
gr.update(interactive=False), # start_btn
|
| 672 |
gr.update(interactive=True), # stop_btn
|
| 673 |
)
|
| 674 |
|
| 675 |
-
def
|
| 676 |
-
result =
|
| 677 |
return (
|
| 678 |
result,
|
| 679 |
gr.update(interactive=True), # start_btn
|
| 680 |
gr.update(interactive=False), # stop_btn
|
| 681 |
)
|
| 682 |
|
| 683 |
-
def initialize_system():
|
| 684 |
-
"""Initialize the diarization system"""
|
| 685 |
-
success = diarization_system.initialize_models()
|
| 686 |
-
if success:
|
| 687 |
-
return "โ
System initialized successfully! Models loaded."
|
| 688 |
-
else:
|
| 689 |
-
return "โ Failed to initialize system. Please check the logs."
|
| 690 |
-
|
| 691 |
-
def start_stream(app):
|
| 692 |
-
"""Start the FastRTC stream"""
|
| 693 |
-
return diarization_system.start_stream(app)
|
| 694 |
-
|
| 695 |
-
def stop_stream():
|
| 696 |
-
"""Stop the FastRTC stream"""
|
| 697 |
-
return diarization_system.stop_stream()
|
| 698 |
-
|
| 699 |
-
def clear_conversation():
|
| 700 |
-
"""Clear the conversation"""
|
| 701 |
-
return diarization_system.clear_conversation()
|
| 702 |
-
|
| 703 |
-
def update_settings(threshold, max_speakers):
|
| 704 |
-
"""Update system settings"""
|
| 705 |
-
return diarization_system.update_settings(threshold, max_speakers)
|
| 706 |
-
|
| 707 |
-
def get_formatted_conversation():
|
| 708 |
-
"""Get the current conversation"""
|
| 709 |
-
return diarization_system.get_formatted_conversation()
|
| 710 |
-
|
| 711 |
-
def get_status():
|
| 712 |
-
"""Get system status"""
|
| 713 |
-
return diarization_system.get_status_info()
|
| 714 |
-
|
| 715 |
# Connect event handlers
|
| 716 |
init_btn.click(
|
| 717 |
on_initialize,
|
|
@@ -719,12 +759,12 @@ def create_interface():
|
|
| 719 |
)
|
| 720 |
|
| 721 |
start_btn.click(
|
| 722 |
-
|
| 723 |
outputs=[status_output, start_btn, stop_btn]
|
| 724 |
)
|
| 725 |
|
| 726 |
stop_btn.click(
|
| 727 |
-
|
| 728 |
outputs=[status_output, start_btn, stop_btn]
|
| 729 |
)
|
| 730 |
|
|
@@ -739,7 +779,7 @@ def create_interface():
|
|
| 739 |
outputs=[status_output]
|
| 740 |
)
|
| 741 |
|
| 742 |
-
# Auto-refresh every 2 seconds when
|
| 743 |
refresh_timer = gr.Timer(2.0)
|
| 744 |
refresh_timer.tick(
|
| 745 |
refresh_display,
|
|
@@ -749,10 +789,24 @@ def create_interface():
|
|
| 749 |
return app
|
| 750 |
|
| 751 |
|
| 752 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 753 |
app = create_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 754 |
app.launch(
|
| 755 |
server_name="0.0.0.0",
|
| 756 |
server_port=7860,
|
| 757 |
share=True
|
| 758 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import urllib.request
|
| 9 |
import torchaudio
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
+
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
+
from fastrtc import Stream, AsyncStreamHandler, ReplyOnPause
|
| 13 |
import json
|
| 14 |
import io
|
| 15 |
import wave
|
| 16 |
+
import asyncio
|
| 17 |
|
| 18 |
# Simplified configuration parameters
|
| 19 |
SILENCE_THRESHS = [0, 0.4]
|
| 20 |
+
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
| 21 |
+
FINAL_BEAM_SIZE = 5
|
| 22 |
+
REALTIME_TRANSCRIPTION_MODEL = "distil-small.en"
|
| 23 |
+
REALTIME_BEAM_SIZE = 5
|
| 24 |
+
TRANSCRIPTION_LANGUAGE = "en"
|
| 25 |
SILERO_SENSITIVITY = 0.4
|
| 26 |
WEBRTC_SENSITIVITY = 3
|
| 27 |
MIN_LENGTH_OF_RECORDING = 0.7
|
|
|
|
| 273 |
}
|
| 274 |
|
| 275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 276 |
class RealtimeSpeakerDiarization:
|
| 277 |
def __init__(self):
|
| 278 |
self.encoder = None
|
| 279 |
self.audio_processor = None
|
| 280 |
self.speaker_detector = None
|
| 281 |
+
self.recorder = None
|
|
|
|
| 282 |
self.sentence_queue = queue.Queue()
|
| 283 |
self.full_sentences = []
|
| 284 |
self.sentence_speakers = []
|
|
|
|
| 288 |
self.is_running = False
|
| 289 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 290 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 291 |
+
self.current_conversation = ""
|
| 292 |
|
| 293 |
def initialize_models(self):
|
| 294 |
"""Initialize the speaker encoder model"""
|
|
|
|
| 315 |
print(f"Model initialization error: {e}")
|
| 316 |
return False
|
| 317 |
|
| 318 |
+
def live_text_detected(self, text):
|
| 319 |
+
"""Callback for real-time transcription updates"""
|
| 320 |
+
text = text.strip()
|
| 321 |
+
if text:
|
| 322 |
+
sentence_delimiters = '.?!ใ'
|
| 323 |
+
prob_sentence_end = (
|
| 324 |
+
len(self.last_realtime_text) > 0
|
| 325 |
+
and text[-1] in sentence_delimiters
|
| 326 |
+
and self.last_realtime_text[-1] in sentence_delimiters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
)
|
| 328 |
+
|
| 329 |
+
self.last_realtime_text = text
|
| 330 |
+
|
| 331 |
+
if prob_sentence_end and FAST_SENTENCE_END:
|
| 332 |
+
self.recorder.stop()
|
| 333 |
+
elif prob_sentence_end:
|
| 334 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
| 335 |
+
else:
|
| 336 |
+
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
+
def process_final_text(self, text):
|
| 339 |
+
"""Process final transcribed text with speaker embedding"""
|
| 340 |
+
text = text.strip()
|
| 341 |
+
if text:
|
| 342 |
try:
|
| 343 |
+
bytes_data = self.recorder.last_transcription_bytes
|
| 344 |
+
self.sentence_queue.put((text, bytes_data))
|
| 345 |
+
self.pending_sentences.append(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
except Exception as e:
|
| 347 |
+
print(f"Error processing final text: {e}")
|
|
|
|
| 348 |
|
| 349 |
def process_sentence_queue(self):
|
| 350 |
"""Process sentences in the queue for speaker detection"""
|
| 351 |
while self.is_running:
|
| 352 |
try:
|
| 353 |
+
text, bytes_data = self.sentence_queue.get(timeout=1)
|
| 354 |
|
| 355 |
# Convert audio data to int16
|
| 356 |
+
audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
# Extract speaker embedding
|
| 359 |
speaker_embedding = self.audio_processor.extract_embedding(audio_int16)
|
|
|
|
| 372 |
# Remove from pending
|
| 373 |
if text in self.pending_sentences:
|
| 374 |
self.pending_sentences.remove(text)
|
| 375 |
+
|
| 376 |
+
# Update conversation display
|
| 377 |
+
self.current_conversation = self.get_formatted_conversation()
|
| 378 |
|
| 379 |
except queue.Empty:
|
| 380 |
continue
|
| 381 |
except Exception as e:
|
| 382 |
print(f"Error processing sentence: {e}")
|
| 383 |
|
| 384 |
+
def start_recording(self):
|
| 385 |
+
"""Start the recording and transcription process"""
|
| 386 |
+
if self.encoder is None:
|
| 387 |
+
return "Please initialize models first!"
|
| 388 |
+
|
| 389 |
+
try:
|
| 390 |
+
# Setup recorder configuration for WebRTC input
|
| 391 |
+
recorder_config = {
|
| 392 |
+
'spinner': False,
|
| 393 |
+
'use_microphone': False, # We'll feed audio manually
|
| 394 |
+
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 395 |
+
'language': TRANSCRIPTION_LANGUAGE,
|
| 396 |
+
'silero_sensitivity': SILERO_SENSITIVITY,
|
| 397 |
+
'webrtc_sensitivity': WEBRTC_SENSITIVITY,
|
| 398 |
+
'post_speech_silence_duration': SILENCE_THRESHS[1],
|
| 399 |
+
'min_length_of_recording': MIN_LENGTH_OF_RECORDING,
|
| 400 |
+
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 401 |
+
'min_gap_between_recordings': 0,
|
| 402 |
+
'enable_realtime_transcription': True,
|
| 403 |
+
'realtime_processing_pause': 0,
|
| 404 |
+
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 405 |
+
'on_realtime_transcription_update': self.live_text_detected,
|
| 406 |
+
'beam_size': FINAL_BEAM_SIZE,
|
| 407 |
+
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 408 |
+
'buffer_size': BUFFER_SIZE,
|
| 409 |
+
'sample_rate': SAMPLE_RATE,
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 413 |
+
|
| 414 |
+
# Start sentence processing thread
|
| 415 |
+
self.is_running = True
|
| 416 |
+
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 417 |
+
self.sentence_thread.start()
|
| 418 |
+
|
| 419 |
+
# Start transcription thread
|
| 420 |
+
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 421 |
+
self.transcription_thread.start()
|
| 422 |
+
|
| 423 |
+
return "Recording started successfully! FastRTC audio input ready."
|
| 424 |
+
|
| 425 |
+
except Exception as e:
|
| 426 |
+
return f"Error starting recording: {e}"
|
| 427 |
+
|
| 428 |
+
def run_transcription(self):
|
| 429 |
+
"""Run the transcription loop"""
|
| 430 |
+
try:
|
| 431 |
+
while self.is_running:
|
| 432 |
+
self.recorder.text(self.process_final_text)
|
| 433 |
+
except Exception as e:
|
| 434 |
+
print(f"Transcription error: {e}")
|
| 435 |
+
|
| 436 |
+
def stop_recording(self):
|
| 437 |
+
"""Stop the recording process"""
|
| 438 |
self.is_running = False
|
| 439 |
+
if self.recorder:
|
| 440 |
+
self.recorder.stop()
|
| 441 |
+
return "Recording stopped!"
|
| 442 |
|
| 443 |
def clear_conversation(self):
|
| 444 |
"""Clear all conversation data"""
|
|
|
|
| 447 |
self.pending_sentences = []
|
| 448 |
self.displayed_text = ""
|
| 449 |
self.last_realtime_text = ""
|
| 450 |
+
self.current_conversation = "Conversation cleared!"
|
| 451 |
|
| 452 |
if self.speaker_detector:
|
| 453 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
|
| 479 |
sentence_text, _ = sentence
|
| 480 |
if i >= len(self.sentence_speakers):
|
| 481 |
color = "#FFFFFF"
|
| 482 |
+
speaker_name = "Unknown"
|
| 483 |
else:
|
| 484 |
speaker_id = self.sentence_speakers[i]
|
| 485 |
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
|
|
|
| 528 |
except Exception as e:
|
| 529 |
return f"Error getting status: {e}"
|
| 530 |
|
| 531 |
+
def process_audio(self, audio_data):
|
| 532 |
+
"""Process audio data from FastRTC"""
|
| 533 |
+
if not self.is_running or not self.recorder:
|
| 534 |
+
return
|
| 535 |
+
|
| 536 |
+
try:
|
| 537 |
+
# Extract audio data from FastRTC format (sample_rate, numpy_array)
|
| 538 |
+
sample_rate, audio_array = audio_data
|
| 539 |
+
|
| 540 |
+
# Convert to int16 format
|
| 541 |
+
if audio_array.dtype != np.int16:
|
| 542 |
+
audio_array = (audio_array * 32767).astype(np.int16)
|
| 543 |
+
|
| 544 |
+
# Convert to bytes and feed to recorder
|
| 545 |
+
audio_bytes = audio_array.tobytes()
|
| 546 |
+
self.recorder.feed_audio(audio_bytes)
|
| 547 |
+
except Exception as e:
|
| 548 |
+
print(f"Error processing FastRTC audio: {e}")
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
# FastRTC Audio Handler
|
| 552 |
+
class DiarizationHandler(AsyncStreamHandler):
|
| 553 |
+
def __init__(self, diarization_system):
|
| 554 |
+
super().__init__()
|
| 555 |
+
self.diarization_system = diarization_system
|
| 556 |
+
|
| 557 |
+
async def emit(self):
|
| 558 |
+
"""Not used in this implementation"""
|
| 559 |
+
return None
|
| 560 |
+
|
| 561 |
+
async def receive(self, data):
|
| 562 |
+
"""Receive audio data from FastRTC and process it"""
|
| 563 |
+
if self.diarization_system.is_running:
|
| 564 |
+
self.diarization_system.process_audio(data)
|
| 565 |
+
|
| 566 |
|
| 567 |
# Global instance
|
| 568 |
diarization_system = RealtimeSpeakerDiarization()
|
| 569 |
|
| 570 |
|
| 571 |
+
def initialize_system():
|
| 572 |
+
"""Initialize the diarization system"""
|
| 573 |
+
success = diarization_system.initialize_models()
|
| 574 |
+
if success:
|
| 575 |
+
return "โ
System initialized successfully! Models loaded."
|
| 576 |
+
else:
|
| 577 |
+
return "โ Failed to initialize system. Please check the logs."
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
def start_recording():
|
| 581 |
+
"""Start recording and transcription"""
|
| 582 |
+
return diarization_system.start_recording()
|
| 583 |
+
|
| 584 |
+
|
| 585 |
+
def stop_recording():
|
| 586 |
+
"""Stop recording and transcription"""
|
| 587 |
+
return diarization_system.stop_recording()
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
def clear_conversation():
|
| 591 |
+
"""Clear the conversation"""
|
| 592 |
+
return diarization_system.clear_conversation()
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
def update_settings(threshold, max_speakers):
|
| 596 |
+
"""Update system settings"""
|
| 597 |
+
return diarization_system.update_settings(threshold, max_speakers)
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
def get_conversation():
|
| 601 |
+
"""Get the current conversation"""
|
| 602 |
+
return diarization_system.get_formatted_conversation()
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
def get_status():
|
| 606 |
+
"""Get system status"""
|
| 607 |
+
return diarization_system.get_status_info()
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
# Setup FastRTC stream handler
|
| 611 |
+
def setup_fastrtc_handler():
|
| 612 |
+
"""Set up FastRTC audio stream handler"""
|
| 613 |
+
handler = DiarizationHandler(diarization_system)
|
| 614 |
+
stream = Stream(handler=handler, modality="audio", mode="receive")
|
| 615 |
+
return stream
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
# Create Gradio interface
|
| 619 |
def create_interface():
|
| 620 |
+
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Monochrome()) as app:
|
|
|
|
|
|
|
| 621 |
gr.Markdown("# ๐ค Real-time Speech Recognition with Speaker Diarization")
|
| 622 |
+
gr.Markdown("This app performs real-time speech recognition with automatic speaker identification and color-coding.")
|
| 623 |
|
| 624 |
with gr.Row():
|
| 625 |
with gr.Column(scale=2):
|
| 626 |
+
# FastRTC Audio Component
|
| 627 |
+
fastrtc_html = gr.HTML("""
|
| 628 |
+
<div class="fastrtc-container" style="margin-bottom: 20px;">
|
| 629 |
+
<h3>๐๏ธ FastRTC Audio Input</h3>
|
| 630 |
+
<p>Click the button below to start the audio stream:</p>
|
| 631 |
+
<button id="start-fastrtc" style="background: #3498db; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer;">
|
| 632 |
+
Start FastRTC Audio
|
| 633 |
+
</button>
|
| 634 |
+
<div id="fastrtc-status" style="margin-top: 10px; font-style: italic;">Not connected</div>
|
| 635 |
+
<script>
|
| 636 |
+
document.getElementById('start-fastrtc').addEventListener('click', function() {
|
| 637 |
+
document.getElementById('fastrtc-status').textContent = 'Connecting...';
|
| 638 |
+
// FastRTC will be initialized here by the middleware
|
| 639 |
+
});
|
| 640 |
+
</script>
|
| 641 |
+
</div>
|
| 642 |
+
""")
|
| 643 |
+
|
| 644 |
# Main conversation display
|
| 645 |
conversation_output = gr.HTML(
|
| 646 |
+
value="<i>Click 'Initialize System' to start...</i>",
|
| 647 |
label="Live Conversation"
|
| 648 |
)
|
| 649 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 650 |
# Control buttons
|
| 651 |
with gr.Row():
|
| 652 |
init_btn = gr.Button("๐ง Initialize System", variant="secondary")
|
| 653 |
+
start_btn = gr.Button("๐๏ธ Start Recording", variant="primary", interactive=False)
|
| 654 |
+
stop_btn = gr.Button("โน๏ธ Stop Recording", variant="stop", interactive=False)
|
| 655 |
clear_btn = gr.Button("๐๏ธ Clear Conversation", interactive=False)
|
| 656 |
|
| 657 |
# Status display
|
|
|
|
| 689 |
gr.Markdown("## ๐ Instructions")
|
| 690 |
gr.Markdown("""
|
| 691 |
1. Click **Initialize System** to load models
|
| 692 |
+
2. Click **Start Recording** to begin processing
|
| 693 |
+
3. Click **Start FastRTC Audio** to connect your microphone
|
| 694 |
+
4. Allow microphone access when prompted
|
| 695 |
+
5. Speak into your microphone
|
| 696 |
+
6. Watch real-time transcription with speaker labels
|
| 697 |
+
7. Adjust settings as needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
""")
|
| 699 |
|
| 700 |
# Speaker color legend
|
|
|
|
| 704 |
color_info.append(f'<span style="color:{color};">โ </span> Speaker {i+1} ({name})')
|
| 705 |
|
| 706 |
gr.HTML("<br>".join(color_info[:DEFAULT_MAX_SPEAKERS]))
|
| 707 |
+
|
| 708 |
+
# FastRTC Integration Notice
|
| 709 |
+
gr.Markdown("""
|
| 710 |
+
## โน๏ธ About FastRTC
|
| 711 |
+
This app uses FastRTC for low-latency audio streaming.
|
| 712 |
+
For optimal performance, use a modern browser and allow microphone access when prompted.
|
| 713 |
+
""")
|
| 714 |
|
| 715 |
# Auto-refresh conversation and status
|
| 716 |
def refresh_display():
|
| 717 |
+
return diarization_system.get_formatted_conversation(), diarization_system.get_status_info()
|
| 718 |
|
| 719 |
# Event handlers
|
| 720 |
def on_initialize():
|
|
|
|
| 724 |
result,
|
| 725 |
gr.update(interactive=True), # start_btn
|
| 726 |
gr.update(interactive=True), # clear_btn
|
| 727 |
+
get_conversation(),
|
| 728 |
get_status()
|
| 729 |
)
|
| 730 |
else:
|
|
|
|
| 732 |
result,
|
| 733 |
gr.update(interactive=False), # start_btn
|
| 734 |
gr.update(interactive=False), # clear_btn
|
| 735 |
+
get_conversation(),
|
| 736 |
get_status()
|
| 737 |
)
|
| 738 |
|
| 739 |
+
def on_start():
|
| 740 |
+
result = start_recording()
|
| 741 |
return (
|
| 742 |
result,
|
| 743 |
gr.update(interactive=False), # start_btn
|
| 744 |
gr.update(interactive=True), # stop_btn
|
| 745 |
)
|
| 746 |
|
| 747 |
+
def on_stop():
|
| 748 |
+
result = stop_recording()
|
| 749 |
return (
|
| 750 |
result,
|
| 751 |
gr.update(interactive=True), # start_btn
|
| 752 |
gr.update(interactive=False), # stop_btn
|
| 753 |
)
|
| 754 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 755 |
# Connect event handlers
|
| 756 |
init_btn.click(
|
| 757 |
on_initialize,
|
|
|
|
| 759 |
)
|
| 760 |
|
| 761 |
start_btn.click(
|
| 762 |
+
on_start,
|
| 763 |
outputs=[status_output, start_btn, stop_btn]
|
| 764 |
)
|
| 765 |
|
| 766 |
stop_btn.click(
|
| 767 |
+
on_stop,
|
| 768 |
outputs=[status_output, start_btn, stop_btn]
|
| 769 |
)
|
| 770 |
|
|
|
|
| 779 |
outputs=[status_output]
|
| 780 |
)
|
| 781 |
|
| 782 |
+
# Auto-refresh every 2 seconds when recording
|
| 783 |
refresh_timer = gr.Timer(2.0)
|
| 784 |
refresh_timer.tick(
|
| 785 |
refresh_display,
|
|
|
|
| 789 |
return app
|
| 790 |
|
| 791 |
|
| 792 |
+
async def main():
|
| 793 |
+
# Setup FastRTC stream
|
| 794 |
+
stream = setup_fastrtc_handler()
|
| 795 |
+
|
| 796 |
+
# Create Gradio app
|
| 797 |
app = create_interface()
|
| 798 |
+
|
| 799 |
+
# Mount FastRTC stream to the Gradio app
|
| 800 |
+
stream.mount(app)
|
| 801 |
+
|
| 802 |
+
# Launch the app
|
| 803 |
app.launch(
|
| 804 |
server_name="0.0.0.0",
|
| 805 |
server_port=7860,
|
| 806 |
share=True
|
| 807 |
)
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
if __name__ == "__main__":
|
| 811 |
+
# Run the async application
|
| 812 |
+
asyncio.run(main())
|