Spaces:
Sleeping
Sleeping
Commit
·
9a6051e
1
Parent(s):
3466e71
Check point 2
Browse files
app.py
CHANGED
|
@@ -10,15 +10,17 @@ import torchaudio
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI, APIRouter
|
| 13 |
-
from fastrtc import Stream, AsyncStreamHandler
|
| 14 |
import json
|
| 15 |
-
import io
|
| 16 |
-
import wave
|
| 17 |
import asyncio
|
| 18 |
import uvicorn
|
| 19 |
-
import socket
|
| 20 |
from queue import Queue
|
| 21 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
# Simplified configuration parameters
|
| 23 |
SILENCE_THRESHS = [0, 0.4]
|
| 24 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
|
@@ -32,35 +34,31 @@ MIN_LENGTH_OF_RECORDING = 0.7
|
|
| 32 |
PRE_RECORDING_BUFFER_DURATION = 0.35
|
| 33 |
|
| 34 |
# Speaker change detection parameters
|
| 35 |
-
DEFAULT_CHANGE_THRESHOLD = 0.
|
| 36 |
EMBEDDING_HISTORY_SIZE = 5
|
| 37 |
-
MIN_SEGMENT_DURATION = 1.
|
| 38 |
DEFAULT_MAX_SPEAKERS = 4
|
| 39 |
-
ABSOLUTE_MAX_SPEAKERS =
|
| 40 |
|
| 41 |
# Global variables
|
| 42 |
-
FAST_SENTENCE_END = True
|
| 43 |
SAMPLE_RATE = 16000
|
| 44 |
-
BUFFER_SIZE =
|
| 45 |
CHANNELS = 1
|
| 46 |
|
| 47 |
-
# Speaker colors
|
| 48 |
SPEAKER_COLORS = [
|
| 49 |
-
"#
|
| 50 |
-
"#
|
| 51 |
-
"#
|
| 52 |
-
"#
|
| 53 |
-
"#
|
| 54 |
-
"#
|
| 55 |
-
"#
|
| 56 |
-
"#
|
| 57 |
-
"#8000FF", # Purple
|
| 58 |
-
"#FFFFFF", # White
|
| 59 |
]
|
| 60 |
|
| 61 |
SPEAKER_COLOR_NAMES = [
|
| 62 |
-
"
|
| 63 |
-
"Blue", "Orange", "Spring Green", "Purple", "White"
|
| 64 |
]
|
| 65 |
|
| 66 |
|
|
@@ -74,24 +72,11 @@ class SpeechBrainEncoder:
|
|
| 74 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 75 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 76 |
|
| 77 |
-
def _download_model(self):
|
| 78 |
-
"""Download pre-trained SpeechBrain ECAPA-TDNN model if not present"""
|
| 79 |
-
model_url = "https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb/resolve/main/embedding_model.ckpt"
|
| 80 |
-
model_path = os.path.join(self.cache_dir, "embedding_model.ckpt")
|
| 81 |
-
|
| 82 |
-
if not os.path.exists(model_path):
|
| 83 |
-
print(f"Downloading ECAPA-TDNN model to {model_path}...")
|
| 84 |
-
urllib.request.urlretrieve(model_url, model_path)
|
| 85 |
-
|
| 86 |
-
return model_path
|
| 87 |
-
|
| 88 |
def load_model(self):
|
| 89 |
"""Load the ECAPA-TDNN model"""
|
| 90 |
try:
|
| 91 |
from speechbrain.pretrained import EncoderClassifier
|
| 92 |
|
| 93 |
-
model_path = self._download_model()
|
| 94 |
-
|
| 95 |
self.model = EncoderClassifier.from_hparams(
|
| 96 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 97 |
savedir=self.cache_dir,
|
|
@@ -99,9 +84,10 @@ class SpeechBrainEncoder:
|
|
| 99 |
)
|
| 100 |
|
| 101 |
self.model_loaded = True
|
|
|
|
| 102 |
return True
|
| 103 |
except Exception as e:
|
| 104 |
-
|
| 105 |
return False
|
| 106 |
|
| 107 |
def embed_utterance(self, audio, sr=16000):
|
|
@@ -111,10 +97,15 @@ class SpeechBrainEncoder:
|
|
| 111 |
|
| 112 |
try:
|
| 113 |
if isinstance(audio, np.ndarray):
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
else:
|
| 116 |
waveform = audio.unsqueeze(0)
|
| 117 |
|
|
|
|
| 118 |
if sr != 16000:
|
| 119 |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 120 |
|
|
@@ -123,7 +114,7 @@ class SpeechBrainEncoder:
|
|
| 123 |
|
| 124 |
return embedding.squeeze().cpu().numpy()
|
| 125 |
except Exception as e:
|
| 126 |
-
|
| 127 |
return np.zeros(self.embedding_dim)
|
| 128 |
|
| 129 |
|
|
@@ -131,41 +122,60 @@ class AudioProcessor:
|
|
| 131 |
"""Processes audio data to extract speaker embeddings"""
|
| 132 |
def __init__(self, encoder):
|
| 133 |
self.encoder = encoder
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
def
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
|
|
|
| 141 |
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
|
|
|
| 144 |
return embedding
|
| 145 |
except Exception as e:
|
| 146 |
-
|
| 147 |
-
return
|
| 148 |
|
| 149 |
|
| 150 |
class SpeakerChangeDetector:
|
| 151 |
-
"""
|
| 152 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 153 |
self.embedding_dim = embedding_dim
|
| 154 |
self.change_threshold = change_threshold
|
| 155 |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 156 |
self.current_speaker = 0
|
| 157 |
-
self.previous_embeddings = []
|
| 158 |
-
self.last_change_time = time.time()
|
| 159 |
-
self.mean_embeddings = [None] * self.max_speakers
|
| 160 |
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
| 161 |
-
self.
|
|
|
|
|
|
|
| 162 |
self.active_speakers = set([0])
|
|
|
|
| 163 |
|
| 164 |
def set_max_speakers(self, max_speakers):
|
| 165 |
"""Update the maximum number of speakers"""
|
| 166 |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 167 |
|
| 168 |
if new_max < self.max_speakers:
|
|
|
|
| 169 |
for speaker_id in list(self.active_speakers):
|
| 170 |
if speaker_id >= new_max:
|
| 171 |
self.active_speakers.discard(speaker_id)
|
|
@@ -173,85 +183,85 @@ class SpeakerChangeDetector:
|
|
| 173 |
if self.current_speaker >= new_max:
|
| 174 |
self.current_speaker = 0
|
| 175 |
|
|
|
|
| 176 |
if new_max > self.max_speakers:
|
| 177 |
-
self.mean_embeddings.extend([None] * (new_max - self.max_speakers))
|
| 178 |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
|
|
|
| 179 |
else:
|
| 180 |
-
self.mean_embeddings = self.mean_embeddings[:new_max]
|
| 181 |
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
|
|
|
| 182 |
|
| 183 |
self.max_speakers = new_max
|
| 184 |
|
| 185 |
def set_change_threshold(self, threshold):
|
| 186 |
"""Update the threshold for detecting speaker changes"""
|
| 187 |
-
self.change_threshold = max(0.1, min(threshold, 0.
|
| 188 |
|
| 189 |
def add_embedding(self, embedding, timestamp=None):
|
| 190 |
-
"""Add a new embedding and
|
| 191 |
current_time = timestamp or time.time()
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
|
|
|
|
|
|
| 203 |
else:
|
| 204 |
-
similarity =
|
| 205 |
|
| 206 |
self.last_similarity = similarity
|
| 207 |
|
|
|
|
| 208 |
time_since_last_change = current_time - self.last_change_time
|
| 209 |
-
|
| 210 |
|
| 211 |
-
if time_since_last_change >= MIN_SEGMENT_DURATION:
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
speaker_mean = self.mean_embeddings[speaker_id]
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
self.previous_embeddings.append(embedding)
|
| 244 |
-
if len(self.previous_embeddings) > EMBEDDING_HISTORY_SIZE:
|
| 245 |
-
self.previous_embeddings.pop(0)
|
| 246 |
-
|
| 247 |
self.speaker_embeddings[self.current_speaker].append(embedding)
|
| 248 |
-
self.active_speakers.add(self.current_speaker)
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
| 253 |
if self.speaker_embeddings[self.current_speaker]:
|
| 254 |
-
self.
|
| 255 |
self.speaker_embeddings[self.current_speaker], axis=0
|
| 256 |
)
|
| 257 |
|
|
@@ -264,7 +274,7 @@ class SpeakerChangeDetector:
|
|
| 264 |
return "#FFFFFF"
|
| 265 |
|
| 266 |
def get_status_info(self):
|
| 267 |
-
"""Return status information
|
| 268 |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
| 269 |
|
| 270 |
return {
|
|
@@ -273,7 +283,8 @@ class SpeakerChangeDetector:
|
|
| 273 |
"active_speakers": len(self.active_speakers),
|
| 274 |
"max_speakers": self.max_speakers,
|
| 275 |
"last_similarity": self.last_similarity,
|
| 276 |
-
"threshold": self.change_threshold
|
|
|
|
| 277 |
}
|
| 278 |
|
| 279 |
|
|
@@ -283,173 +294,121 @@ class RealtimeSpeakerDiarization:
|
|
| 283 |
self.audio_processor = None
|
| 284 |
self.speaker_detector = None
|
| 285 |
self.recorder = None
|
| 286 |
-
self.sentence_queue = queue.Queue(
|
| 287 |
self.full_sentences = []
|
| 288 |
self.sentence_speakers = []
|
| 289 |
self.pending_sentences = []
|
| 290 |
-
self.
|
| 291 |
-
self.last_realtime_text = ""
|
| 292 |
self.is_running = False
|
| 293 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 294 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 295 |
-
self.
|
| 296 |
-
self.
|
| 297 |
-
# Add locks for thread safety
|
| 298 |
-
self._state_lock = threading.RLock() # Reentrant lock for shared state
|
| 299 |
-
self._audio_lock = threading.Lock() # Lock for audio processing
|
| 300 |
|
| 301 |
def initialize_models(self):
|
| 302 |
"""Initialize the speaker encoder model"""
|
| 303 |
try:
|
| 304 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 305 |
-
|
| 306 |
|
| 307 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
|
|
|
| 308 |
|
| 309 |
-
|
| 310 |
-
import threading
|
| 311 |
-
load_success = [False]
|
| 312 |
-
|
| 313 |
-
def load_model_thread():
|
| 314 |
-
try:
|
| 315 |
-
success = self.encoder.load_model()
|
| 316 |
-
load_success[0] = success
|
| 317 |
-
except Exception as e:
|
| 318 |
-
print(f"Error in model loading thread: {e}")
|
| 319 |
-
|
| 320 |
-
# Start loading in a thread with timeout
|
| 321 |
-
load_thread = threading.Thread(target=load_model_thread)
|
| 322 |
-
load_thread.daemon = True
|
| 323 |
-
load_thread.start()
|
| 324 |
-
load_thread.join(timeout=60) # 60 second timeout for model loading
|
| 325 |
-
|
| 326 |
-
if load_success[0]:
|
| 327 |
self.audio_processor = AudioProcessor(self.encoder)
|
| 328 |
self.speaker_detector = SpeakerChangeDetector(
|
| 329 |
embedding_dim=self.encoder.embedding_dim,
|
| 330 |
change_threshold=self.change_threshold,
|
| 331 |
max_speakers=self.max_speakers
|
| 332 |
)
|
| 333 |
-
|
| 334 |
return True
|
| 335 |
else:
|
| 336 |
-
|
| 337 |
-
return
|
| 338 |
-
|
| 339 |
-
except Exception as e:
|
| 340 |
-
print(f"Model initialization error: {e}")
|
| 341 |
-
import traceback
|
| 342 |
-
traceback.print_exc()
|
| 343 |
-
return self._initialize_fallback()
|
| 344 |
-
|
| 345 |
-
def _initialize_fallback(self):
|
| 346 |
-
"""Initialize fallback mode when model loading fails"""
|
| 347 |
-
try:
|
| 348 |
-
print("Initializing fallback mode with simple speaker detection...")
|
| 349 |
-
# Create a simple embedding dimension
|
| 350 |
-
embedding_dim = 64
|
| 351 |
-
|
| 352 |
-
# Create a dummy encoder that produces random embeddings
|
| 353 |
-
class DummyEncoder:
|
| 354 |
-
def __init__(self):
|
| 355 |
-
self.embedding_dim = embedding_dim
|
| 356 |
-
self.model_loaded = True
|
| 357 |
-
|
| 358 |
-
def embed_utterance(self, audio, sr=16000):
|
| 359 |
-
# Simple energy-based pseudo-embedding
|
| 360 |
-
if isinstance(audio, np.ndarray):
|
| 361 |
-
# Create a simple feature vector (not a real embedding)
|
| 362 |
-
energy = np.mean(np.abs(audio))
|
| 363 |
-
# Create a pseudo-random but consistent embedding based on audio energy
|
| 364 |
-
np.random.seed(int(energy * 1000))
|
| 365 |
-
return np.random.rand(embedding_dim)
|
| 366 |
-
return np.random.rand(embedding_dim)
|
| 367 |
-
|
| 368 |
-
# Set up system with fallback components
|
| 369 |
-
self.encoder = DummyEncoder()
|
| 370 |
-
self.audio_processor = AudioProcessor(self.encoder)
|
| 371 |
-
self.speaker_detector = SpeakerChangeDetector(
|
| 372 |
-
embedding_dim=embedding_dim,
|
| 373 |
-
change_threshold=self.change_threshold,
|
| 374 |
-
max_speakers=2 # Limit speakers in fallback mode
|
| 375 |
-
)
|
| 376 |
-
|
| 377 |
-
print("Fallback mode initialized - limited functionality!")
|
| 378 |
-
return True
|
| 379 |
-
|
| 380 |
except Exception as e:
|
| 381 |
-
|
| 382 |
return False
|
| 383 |
|
| 384 |
def live_text_detected(self, text):
|
| 385 |
"""Callback for real-time transcription updates"""
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
sentence_delimiters = '.?!。'
|
| 389 |
-
prob_sentence_end = (
|
| 390 |
-
len(self.last_realtime_text) > 0
|
| 391 |
-
and text[-1] in sentence_delimiters
|
| 392 |
-
and self.last_realtime_text[-1] in sentence_delimiters
|
| 393 |
-
)
|
| 394 |
-
|
| 395 |
-
self.last_realtime_text = text
|
| 396 |
-
|
| 397 |
-
if prob_sentence_end and FAST_SENTENCE_END:
|
| 398 |
-
self.recorder.stop()
|
| 399 |
-
elif prob_sentence_end:
|
| 400 |
-
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[0]
|
| 401 |
-
else:
|
| 402 |
-
self.recorder.post_speech_silence_duration = SILENCE_THRESHS[1]
|
| 403 |
|
| 404 |
def process_final_text(self, text):
|
| 405 |
"""Process final transcribed text with speaker embedding"""
|
| 406 |
text = text.strip()
|
| 407 |
if text:
|
| 408 |
try:
|
| 409 |
-
|
| 410 |
-
self.
|
| 411 |
-
|
| 412 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
except Exception as e:
|
| 414 |
-
|
| 415 |
|
| 416 |
def process_sentence_queue(self):
|
| 417 |
"""Process sentences in the queue for speaker detection"""
|
| 418 |
while self.is_running:
|
| 419 |
try:
|
| 420 |
-
text,
|
| 421 |
|
| 422 |
-
|
| 423 |
-
audio_int16 = np.frombuffer(bytes_data, dtype=np.int16)
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
# Store sentence and embedding
|
| 430 |
-
self.full_sentences.append((text, speaker_embedding))
|
| 431 |
-
|
| 432 |
-
# Fill in missing speaker assignments
|
| 433 |
-
while len(self.sentence_speakers) < len(self.full_sentences) - 1:
|
| 434 |
-
self.sentence_speakers.append(0)
|
| 435 |
|
| 436 |
-
#
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
self.current_conversation = self.get_formatted_conversation()
|
| 446 |
|
| 447 |
except queue.Empty:
|
| 448 |
continue
|
| 449 |
except Exception as e:
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 453 |
|
| 454 |
def start_recording(self):
|
| 455 |
"""Start the recording and transcription process"""
|
|
@@ -457,10 +416,10 @@ class RealtimeSpeakerDiarization:
|
|
| 457 |
return "Please initialize models first!"
|
| 458 |
|
| 459 |
try:
|
| 460 |
-
# Setup recorder configuration
|
| 461 |
recorder_config = {
|
| 462 |
'spinner': False,
|
| 463 |
-
'use_microphone':
|
| 464 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 465 |
'language': TRANSCRIPTION_LANGUAGE,
|
| 466 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
|
@@ -470,45 +429,29 @@ class RealtimeSpeakerDiarization:
|
|
| 470 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 471 |
'min_gap_between_recordings': 0,
|
| 472 |
'enable_realtime_transcription': True,
|
| 473 |
-
'realtime_processing_pause': 0,
|
| 474 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 475 |
'on_realtime_transcription_update': self.live_text_detected,
|
| 476 |
'beam_size': FINAL_BEAM_SIZE,
|
| 477 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
| 478 |
-
'buffer_size': BUFFER_SIZE,
|
| 479 |
'sample_rate': SAMPLE_RATE,
|
| 480 |
-
'external_audio': True, # Signal that we'll provide audio
|
| 481 |
}
|
| 482 |
|
| 483 |
-
# Make sure we're not running already
|
| 484 |
-
if hasattr(self, 'is_running') and self.is_running:
|
| 485 |
-
self.stop_recording()
|
| 486 |
-
# Short pause to ensure cleanup completes
|
| 487 |
-
time.sleep(0.5)
|
| 488 |
-
|
| 489 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 490 |
|
| 491 |
-
#
|
| 492 |
-
with self._state_lock:
|
| 493 |
-
self.pending_sentences = []
|
| 494 |
-
self.last_realtime_text = ""
|
| 495 |
-
|
| 496 |
-
# Start sentence processing thread
|
| 497 |
self.is_running = True
|
| 498 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 499 |
self.sentence_thread.start()
|
| 500 |
|
| 501 |
-
# Start transcription thread
|
| 502 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 503 |
self.transcription_thread.start()
|
| 504 |
|
| 505 |
-
return "Recording started successfully!
|
| 506 |
|
| 507 |
except Exception as e:
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
traceback.print_exc()
|
| 511 |
-
return f"Error starting recording: {str(e)}"
|
| 512 |
|
| 513 |
def run_transcription(self):
|
| 514 |
"""Run the transcription loop"""
|
|
@@ -516,63 +459,21 @@ class RealtimeSpeakerDiarization:
|
|
| 516 |
while self.is_running:
|
| 517 |
self.recorder.text(self.process_final_text)
|
| 518 |
except Exception as e:
|
| 519 |
-
|
| 520 |
|
| 521 |
def stop_recording(self):
|
| 522 |
"""Stop the recording process"""
|
| 523 |
self.is_running = False
|
| 524 |
if self.recorder:
|
| 525 |
self.recorder.stop()
|
| 526 |
-
|
| 527 |
-
# Wait for threads to finish
|
| 528 |
-
self._cleanup_resources()
|
| 529 |
-
|
| 530 |
return "Recording stopped!"
|
| 531 |
|
| 532 |
-
def _cleanup_resources(self):
|
| 533 |
-
"""Clean up resources and threads"""
|
| 534 |
-
try:
|
| 535 |
-
# Wait for threads to stop gracefully
|
| 536 |
-
if hasattr(self, 'sentence_thread') and self.sentence_thread is not None:
|
| 537 |
-
if self.sentence_thread.is_alive():
|
| 538 |
-
self.sentence_thread.join(timeout=3.0)
|
| 539 |
-
|
| 540 |
-
if hasattr(self, 'transcription_thread') and self.transcription_thread is not None:
|
| 541 |
-
if self.transcription_thread.is_alive():
|
| 542 |
-
self.transcription_thread.join(timeout=3.0)
|
| 543 |
-
|
| 544 |
-
# Clean up memory
|
| 545 |
-
with self._state_lock:
|
| 546 |
-
# Limit history size to prevent memory leaks
|
| 547 |
-
if len(self.full_sentences) > 1000:
|
| 548 |
-
self.full_sentences = self.full_sentences[-1000:]
|
| 549 |
-
if len(self.sentence_speakers) > 1000:
|
| 550 |
-
self.sentence_speakers = self.sentence_speakers[-1000:]
|
| 551 |
-
|
| 552 |
-
# Clear audio buffer
|
| 553 |
-
with self._audio_lock:
|
| 554 |
-
self.audio_buffer = []
|
| 555 |
-
|
| 556 |
-
# Clear queue
|
| 557 |
-
while not self.sentence_queue.empty():
|
| 558 |
-
try:
|
| 559 |
-
self.sentence_queue.get_nowait()
|
| 560 |
-
except:
|
| 561 |
-
pass
|
| 562 |
-
|
| 563 |
-
except Exception as e:
|
| 564 |
-
print(f"Error during resource cleanup: {e}")
|
| 565 |
-
import traceback
|
| 566 |
-
traceback.print_exc()
|
| 567 |
-
|
| 568 |
def clear_conversation(self):
|
| 569 |
"""Clear all conversation data"""
|
| 570 |
-
self.
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
self.last_realtime_text = ""
|
| 575 |
-
self.current_conversation = "Conversation cleared!"
|
| 576 |
|
| 577 |
if self.speaker_detector:
|
| 578 |
self.speaker_detector = SpeakerChangeDetector(
|
|
@@ -595,36 +496,8 @@ class RealtimeSpeakerDiarization:
|
|
| 595 |
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
| 596 |
|
| 597 |
def get_formatted_conversation(self):
|
| 598 |
-
"""Get the formatted conversation
|
| 599 |
-
|
| 600 |
-
sentences_with_style = []
|
| 601 |
-
|
| 602 |
-
# Process completed sentences
|
| 603 |
-
for i, sentence in enumerate(self.full_sentences):
|
| 604 |
-
sentence_text, _ = sentence
|
| 605 |
-
if i >= len(self.sentence_speakers):
|
| 606 |
-
color = "#FFFFFF"
|
| 607 |
-
speaker_name = "Unknown"
|
| 608 |
-
else:
|
| 609 |
-
speaker_id = self.sentence_speakers[i]
|
| 610 |
-
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
| 611 |
-
speaker_name = f"Speaker {speaker_id + 1}"
|
| 612 |
-
|
| 613 |
-
sentences_with_style.append(
|
| 614 |
-
f'<span style="color:{color};"><b>{speaker_name}:</b> {sentence_text}</span>')
|
| 615 |
-
|
| 616 |
-
# Add pending sentences
|
| 617 |
-
for pending_sentence in self.pending_sentences:
|
| 618 |
-
sentences_with_style.append(
|
| 619 |
-
f'<span style="color:#60FFFF;"><b>Processing:</b> {pending_sentence}</span>')
|
| 620 |
-
|
| 621 |
-
if sentences_with_style:
|
| 622 |
-
return "<br><br>".join(sentences_with_style)
|
| 623 |
-
else:
|
| 624 |
-
return "Waiting for speech input..."
|
| 625 |
-
|
| 626 |
-
except Exception as e:
|
| 627 |
-
return f"Error formatting conversation: {e}"
|
| 628 |
|
| 629 |
def get_status_info(self):
|
| 630 |
"""Get current status information"""
|
|
@@ -640,808 +513,473 @@ class RealtimeSpeakerDiarization:
|
|
| 640 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 641 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 642 |
f"**Total Sentences:** {len(self.full_sentences)}",
|
|
|
|
| 643 |
"",
|
| 644 |
-
"**Speaker
|
| 645 |
]
|
| 646 |
|
| 647 |
for i in range(status['max_speakers']):
|
| 648 |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
| 649 |
-
|
|
|
|
|
|
|
| 650 |
|
| 651 |
return "\n".join(status_lines)
|
| 652 |
|
| 653 |
except Exception as e:
|
| 654 |
return f"Error getting status: {e}"
|
| 655 |
|
| 656 |
-
def feed_audio_data(self, audio_data):
|
| 657 |
-
"""Feed audio data to the recorder"""
|
| 658 |
-
if not self.is_running or not self.recorder:
|
| 659 |
-
return
|
| 660 |
-
|
| 661 |
-
try:
|
| 662 |
-
# Ensure audio is in the correct format (16-bit PCM)
|
| 663 |
-
if isinstance(audio_data, np.ndarray):
|
| 664 |
-
if audio_data.dtype != np.int16:
|
| 665 |
-
# Convert float to int16
|
| 666 |
-
if audio_data.dtype == np.float32 or audio_data.dtype == np.float64:
|
| 667 |
-
audio_data = (audio_data * 32767).astype(np.int16)
|
| 668 |
-
else:
|
| 669 |
-
audio_data = audio_data.astype(np.int16)
|
| 670 |
-
|
| 671 |
-
# Convert to bytes
|
| 672 |
-
audio_bytes = audio_data.tobytes()
|
| 673 |
-
else:
|
| 674 |
-
audio_bytes = audio_data
|
| 675 |
-
|
| 676 |
-
# Use the recorder's internal buffer mechanism
|
| 677 |
-
if hasattr(self.recorder, 'feed_audio') and callable(self.recorder.feed_audio):
|
| 678 |
-
self.recorder.feed_audio(audio_bytes)
|
| 679 |
-
else:
|
| 680 |
-
# Fallback: Direct access to the underlying buffer if the method doesn't exist
|
| 681 |
-
self.audio_buffer.append(audio_bytes)
|
| 682 |
-
# Process buffered audio when enough is accumulated
|
| 683 |
-
if len(self.audio_buffer) > 5: # Process in small batches
|
| 684 |
-
combined = b''.join(self.audio_buffer)
|
| 685 |
-
if hasattr(self.recorder, '_process_audio'):
|
| 686 |
-
self.recorder._process_audio(combined)
|
| 687 |
-
self.audio_buffer = []
|
| 688 |
-
|
| 689 |
-
except Exception as e:
|
| 690 |
-
print(f"Error feeding audio data: {str(e)}")
|
| 691 |
-
import traceback
|
| 692 |
-
traceback.print_exc()
|
| 693 |
-
|
| 694 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
| 695 |
"""Process audio chunk from FastRTC input"""
|
| 696 |
-
if not self.is_running or self.
|
| 697 |
return
|
| 698 |
|
| 699 |
try:
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
print("Warning: Empty audio chunk received")
|
| 707 |
-
return
|
| 708 |
-
|
| 709 |
-
# Resample if needed
|
| 710 |
-
if sample_rate != SAMPLE_RATE:
|
| 711 |
-
audio_int16 = self._resample_audio(audio_int16, sample_rate, SAMPLE_RATE)
|
| 712 |
-
|
| 713 |
-
# Convert to bytes for feeding to recorder
|
| 714 |
-
audio_bytes = audio_int16.tobytes()
|
| 715 |
-
|
| 716 |
-
# Feed to recorder
|
| 717 |
-
self.feed_audio_data(audio_bytes)
|
| 718 |
-
|
| 719 |
-
except Exception as e:
|
| 720 |
-
print(f"Error processing audio chunk: {str(e)}")
|
| 721 |
-
import traceback
|
| 722 |
-
traceback.print_exc()
|
| 723 |
-
|
| 724 |
-
def _resample_audio(self, audio, orig_sr, target_sr):
|
| 725 |
-
"""Resample audio to target sample rate"""
|
| 726 |
-
try:
|
| 727 |
-
import scipy.signal
|
| 728 |
-
|
| 729 |
-
# Get the resampling ratio
|
| 730 |
-
ratio = target_sr / orig_sr
|
| 731 |
|
| 732 |
-
#
|
| 733 |
-
|
|
|
|
| 734 |
|
| 735 |
-
#
|
| 736 |
-
|
|
|
|
| 737 |
|
| 738 |
-
#
|
| 739 |
-
|
| 740 |
-
except Exception as e:
|
| 741 |
-
print(f"Error resampling audio: {e}")
|
| 742 |
-
return audio
|
| 743 |
-
|
| 744 |
-
def _normalize_audio_format(self, audio_data, target_dtype=np.int16, target_sample_rate=SAMPLE_RATE):
|
| 745 |
-
"""Normalize audio data to consistent format
|
| 746 |
-
|
| 747 |
-
Args:
|
| 748 |
-
audio_data: Input audio as numpy array or bytes
|
| 749 |
-
target_dtype: Target data type (np.int16 or np.float32)
|
| 750 |
-
target_sample_rate: Target sample rate
|
| 751 |
|
| 752 |
-
|
| 753 |
-
|
| 754 |
-
|
| 755 |
-
|
| 756 |
-
|
| 757 |
-
if isinstance(audio_data, bytes):
|
| 758 |
-
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
| 759 |
-
elif isinstance(audio_data, (list, tuple)):
|
| 760 |
-
audio_array = np.array(audio_data)
|
| 761 |
-
else:
|
| 762 |
-
audio_array = audio_data
|
| 763 |
-
|
| 764 |
-
# Convert data type as needed
|
| 765 |
-
if target_dtype == np.int16 and audio_array.dtype != np.int16:
|
| 766 |
-
if audio_array.dtype == np.float32 or audio_array.dtype == np.float64:
|
| 767 |
-
# Check if normalized to [-1, 1] range
|
| 768 |
-
if np.max(np.abs(audio_array)) <= 1.0:
|
| 769 |
-
audio_array = (audio_array * 32767).astype(np.int16)
|
| 770 |
-
else:
|
| 771 |
-
audio_array = audio_array.astype(np.int16)
|
| 772 |
-
else:
|
| 773 |
-
audio_array = audio_array.astype(np.int16)
|
| 774 |
-
elif target_dtype == np.float32 and audio_array.dtype != np.float32:
|
| 775 |
-
if audio_array.dtype == np.int16:
|
| 776 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 777 |
-
else:
|
| 778 |
-
audio_array = audio_array.astype(np.float32)
|
| 779 |
-
|
| 780 |
-
# Ensure mono audio
|
| 781 |
-
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
| 782 |
-
audio_array = np.mean(audio_array, axis=1)
|
| 783 |
-
|
| 784 |
-
# Reshape if needed
|
| 785 |
-
if len(audio_array.shape) == 1:
|
| 786 |
-
if target_dtype == np.int16:
|
| 787 |
-
audio_array = np.expand_dims(audio_array, 0)
|
| 788 |
|
| 789 |
-
return audio_array
|
| 790 |
-
|
| 791 |
except Exception as e:
|
| 792 |
-
|
| 793 |
-
import traceback
|
| 794 |
-
traceback.print_exc()
|
| 795 |
-
# Return empty array of correct type as fallback
|
| 796 |
-
return np.array([], dtype=target_dtype)
|
| 797 |
-
|
| 798 |
|
| 799 |
-
# FastRTC Audio Handler for Real-time Diarization
|
| 800 |
|
|
|
|
| 801 |
class DiarizationHandler(AsyncStreamHandler):
|
| 802 |
def __init__(self, diarization_system):
|
| 803 |
super().__init__()
|
| 804 |
self.diarization_system = diarization_system
|
| 805 |
-
self.
|
| 806 |
-
self.
|
| 807 |
-
self.sample_rate = 16000 # Default sample rate
|
| 808 |
-
self.processing_task = None
|
| 809 |
|
| 810 |
def copy(self):
|
| 811 |
"""Return a fresh handler for each new stream connection"""
|
| 812 |
return DiarizationHandler(self.diarization_system)
|
| 813 |
|
| 814 |
async def emit(self):
|
| 815 |
-
"""Not used
|
| 816 |
return None
|
| 817 |
|
| 818 |
async def receive(self, frame):
|
| 819 |
-
"""Receive audio data from FastRTC
|
| 820 |
try:
|
| 821 |
if not self.diarization_system.is_running:
|
| 822 |
return
|
| 823 |
|
| 824 |
-
# Extract audio data
|
| 825 |
-
|
| 826 |
-
|
| 827 |
-
|
| 828 |
-
|
|
|
|
|
|
|
|
|
|
| 829 |
else:
|
| 830 |
-
audio_data =
|
| 831 |
|
| 832 |
-
#
|
| 833 |
-
|
|
|
|
| 834 |
|
| 835 |
-
#
|
| 836 |
-
|
| 837 |
-
|
| 838 |
-
|
| 839 |
-
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
#
|
| 844 |
-
|
| 845 |
-
return
|
| 846 |
|
| 847 |
except Exception as e:
|
| 848 |
-
|
| 849 |
-
import traceback
|
| 850 |
-
traceback.print_exc()
|
| 851 |
|
| 852 |
-
async def
|
| 853 |
-
"""Background task to process audio from queue"""
|
| 854 |
-
while self.is_processing:
|
| 855 |
-
try:
|
| 856 |
-
# Get from queue with timeout to allow checking is_processing flag
|
| 857 |
-
try:
|
| 858 |
-
audio_data, sample_rate = await asyncio.wait_for(
|
| 859 |
-
self.audio_queue.get(),
|
| 860 |
-
timeout=0.5
|
| 861 |
-
)
|
| 862 |
-
except asyncio.TimeoutError:
|
| 863 |
-
# No audio available, check if we should keep running
|
| 864 |
-
continue
|
| 865 |
-
|
| 866 |
-
# Convert to numpy array if needed
|
| 867 |
-
if isinstance(audio_data, bytes):
|
| 868 |
-
# Convert bytes to numpy array (assuming 16-bit PCM)
|
| 869 |
-
audio_array = np.frombuffer(audio_data, dtype=np.int16)
|
| 870 |
-
# Normalize to float32 range [-1, 1]
|
| 871 |
-
audio_array = audio_array.astype(np.float32) / 32768.0
|
| 872 |
-
elif isinstance(audio_data, (list, tuple)):
|
| 873 |
-
audio_array = np.array(audio_data, dtype=np.float32)
|
| 874 |
-
elif isinstance(audio_data, np.ndarray):
|
| 875 |
-
audio_array = audio_array.astype(np.float32)
|
| 876 |
-
else:
|
| 877 |
-
print(f"Unknown audio data type: {type(audio_data)}")
|
| 878 |
-
continue
|
| 879 |
-
|
| 880 |
-
# Ensure mono audio
|
| 881 |
-
if len(audio_array.shape) > 1 and audio_array.shape[1] > 1:
|
| 882 |
-
audio_array = np.mean(audio_array, axis=1)
|
| 883 |
-
|
| 884 |
-
# Ensure 1D array
|
| 885 |
-
if len(audio_array.shape) > 1:
|
| 886 |
-
audio_array = audio_array.flatten()
|
| 887 |
-
|
| 888 |
-
# Process audio through thread pool to avoid blocking event loop
|
| 889 |
-
await self.process_audio_async(audio_array, sample_rate)
|
| 890 |
-
|
| 891 |
-
# Mark as done
|
| 892 |
-
self.audio_queue.task_done()
|
| 893 |
-
|
| 894 |
-
except Exception as e:
|
| 895 |
-
print(f"Error in audio processing loop: {e}")
|
| 896 |
-
import traceback
|
| 897 |
-
traceback.print_exc()
|
| 898 |
-
# Short sleep to avoid tight loop
|
| 899 |
-
await asyncio.sleep(0.1)
|
| 900 |
-
|
| 901 |
-
async def process_audio_async(self, audio_data, sample_rate=16000):
|
| 902 |
"""Process audio data asynchronously"""
|
| 903 |
try:
|
| 904 |
-
# Run the audio processing in a thread pool to avoid blocking
|
| 905 |
loop = asyncio.get_event_loop()
|
| 906 |
await loop.run_in_executor(
|
| 907 |
None,
|
| 908 |
self.diarization_system.process_audio_chunk,
|
| 909 |
audio_data,
|
| 910 |
-
|
| 911 |
)
|
| 912 |
except Exception as e:
|
| 913 |
-
|
| 914 |
-
|
| 915 |
-
async def start_up(self) -> None:
|
| 916 |
-
"""Initialize any resources when the stream starts"""
|
| 917 |
-
print("FastRTC stream started")
|
| 918 |
-
self.is_processing = True
|
| 919 |
-
|
| 920 |
-
# Start background processing task
|
| 921 |
-
self.processing_task = asyncio.create_task(self._process_audio_loop())
|
| 922 |
-
|
| 923 |
-
async def shutdown(self) -> None:
|
| 924 |
-
"""Clean up any resources when the stream ends"""
|
| 925 |
-
print("FastRTC stream shutting down")
|
| 926 |
-
self.is_processing = False
|
| 927 |
-
|
| 928 |
-
# Wait for processing task to finish
|
| 929 |
-
if self.processing_task:
|
| 930 |
-
try:
|
| 931 |
-
# Cancel and wait for task
|
| 932 |
-
self.processing_task.cancel()
|
| 933 |
-
await asyncio.wait([self.processing_task], timeout=2.0)
|
| 934 |
-
except (asyncio.CancelledError, Exception) as e:
|
| 935 |
-
print(f"Error cancelling audio processing task: {e}")
|
| 936 |
-
|
| 937 |
-
# Clear queue
|
| 938 |
-
while not self.audio_queue.empty():
|
| 939 |
-
try:
|
| 940 |
-
self.audio_queue.get_nowait()
|
| 941 |
-
self.audio_queue.task_done()
|
| 942 |
-
except:
|
| 943 |
-
pass
|
| 944 |
|
| 945 |
|
| 946 |
# Global instances
|
| 947 |
-
diarization_system =
|
| 948 |
audio_handler = None
|
| 949 |
|
| 950 |
-
|
| 951 |
def initialize_system():
|
| 952 |
"""Initialize the diarization system"""
|
| 953 |
-
global audio_handler
|
| 954 |
try:
|
| 955 |
-
if diarization_system is None:
|
| 956 |
-
print("Error: RealtimeSpeakerDiarization not initialized")
|
| 957 |
-
return "❌ Diarization system not available. Please ensure RealtimeSpeakerDiarization is properly imported."
|
| 958 |
-
|
| 959 |
success = diarization_system.initialize_models()
|
| 960 |
if success:
|
| 961 |
audio_handler = DiarizationHandler(diarization_system)
|
| 962 |
-
return "✅ System initialized successfully!
|
| 963 |
else:
|
| 964 |
-
return "❌ Failed to initialize system.
|
| 965 |
except Exception as e:
|
| 966 |
-
|
| 967 |
return f"❌ Initialization error: {str(e)}"
|
| 968 |
|
| 969 |
-
|
| 970 |
def start_recording():
|
| 971 |
"""Start recording and transcription"""
|
| 972 |
try:
|
| 973 |
-
if diarization_system is None:
|
| 974 |
-
return "❌ System not initialized"
|
| 975 |
result = diarization_system.start_recording()
|
| 976 |
-
return f"🎙️ {result}
|
| 977 |
except Exception as e:
|
| 978 |
return f"❌ Failed to start recording: {str(e)}"
|
| 979 |
|
| 980 |
-
|
| 981 |
def stop_recording():
|
| 982 |
"""Stop recording and transcription"""
|
| 983 |
try:
|
| 984 |
-
if diarization_system is None:
|
| 985 |
-
return "❌ System not initialized"
|
| 986 |
result = diarization_system.stop_recording()
|
| 987 |
return f"⏹️ {result}"
|
| 988 |
except Exception as e:
|
| 989 |
return f"❌ Failed to stop recording: {str(e)}"
|
| 990 |
|
| 991 |
-
|
| 992 |
def clear_conversation():
|
| 993 |
"""Clear the conversation"""
|
| 994 |
try:
|
| 995 |
-
if diarization_system is None:
|
| 996 |
-
return "❌ System not initialized"
|
| 997 |
result = diarization_system.clear_conversation()
|
| 998 |
return f"🗑️ {result}"
|
| 999 |
except Exception as e:
|
| 1000 |
return f"❌ Failed to clear conversation: {str(e)}"
|
| 1001 |
|
| 1002 |
-
|
| 1003 |
def update_settings(threshold, max_speakers):
|
| 1004 |
"""Update system settings"""
|
| 1005 |
try:
|
| 1006 |
-
if diarization_system is None:
|
| 1007 |
-
return "❌ System not initialized"
|
| 1008 |
result = diarization_system.update_settings(threshold, max_speakers)
|
| 1009 |
return f"⚙️ {result}"
|
| 1010 |
except Exception as e:
|
| 1011 |
return f"❌ Failed to update settings: {str(e)}"
|
| 1012 |
|
| 1013 |
-
|
| 1014 |
def get_conversation():
|
| 1015 |
"""Get the current conversation"""
|
| 1016 |
try:
|
| 1017 |
-
if diarization_system is None:
|
| 1018 |
-
return "<i>System not initialized</i>"
|
| 1019 |
return diarization_system.get_formatted_conversation()
|
| 1020 |
except Exception as e:
|
| 1021 |
return f"<i>Error getting conversation: {str(e)}</i>"
|
| 1022 |
|
| 1023 |
-
|
| 1024 |
def get_status():
|
| 1025 |
"""Get system status"""
|
| 1026 |
try:
|
| 1027 |
-
if diarization_system is None:
|
| 1028 |
-
return "System not initialized"
|
| 1029 |
return diarization_system.get_status_info()
|
| 1030 |
except Exception as e:
|
| 1031 |
return f"Error getting status: {str(e)}"
|
| 1032 |
|
| 1033 |
-
|
| 1034 |
# Create Gradio interface
|
| 1035 |
def create_interface():
|
| 1036 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
| 1037 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
| 1038 |
-
gr.Markdown("
|
| 1039 |
|
| 1040 |
with gr.Row():
|
| 1041 |
with gr.Column(scale=2):
|
| 1042 |
-
#
|
| 1043 |
conversation_output = gr.HTML(
|
| 1044 |
-
value="<div style='padding: 20px; background: #
|
| 1045 |
-
label="Live Conversation"
|
| 1046 |
-
elem_id="conversation_display"
|
| 1047 |
)
|
| 1048 |
|
| 1049 |
# Control buttons
|
| 1050 |
with gr.Row():
|
| 1051 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
| 1052 |
-
start_btn = gr.Button("🎙️ Start
|
| 1053 |
-
stop_btn = gr.Button("⏹️ Stop
|
| 1054 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False)
|
| 1055 |
|
| 1056 |
-
# FastRTC Stream Interface
|
| 1057 |
-
with gr.Row():
|
| 1058 |
-
gr.HTML("""
|
| 1059 |
-
<div id="fastrtc-container" style="border: 2px solid #ddd; border-radius: 10px; padding: 20px; margin: 10px 0;">
|
| 1060 |
-
<h3>🎵 Audio Stream</h3>
|
| 1061 |
-
<p>FastRTC audio stream will appear here when recording starts.</p>
|
| 1062 |
-
<div id="stream-status" style="padding: 10px; background: #f8f9fa; border-radius: 5px; margin-top: 10px;">
|
| 1063 |
-
Status: Waiting for initialization...
|
| 1064 |
-
</div>
|
| 1065 |
-
</div>
|
| 1066 |
-
""")
|
| 1067 |
-
|
| 1068 |
# Status display
|
| 1069 |
status_output = gr.Textbox(
|
| 1070 |
label="System Status",
|
| 1071 |
-
value="
|
| 1072 |
-
lines=
|
| 1073 |
-
interactive=False
|
| 1074 |
-
show_copy_button=True
|
| 1075 |
)
|
| 1076 |
|
| 1077 |
with gr.Column(scale=1):
|
| 1078 |
-
# Settings
|
| 1079 |
gr.Markdown("## ⚙️ Settings")
|
| 1080 |
|
| 1081 |
threshold_slider = gr.Slider(
|
| 1082 |
-
minimum=0.
|
| 1083 |
-
maximum=0.
|
| 1084 |
step=0.05,
|
| 1085 |
-
value=
|
| 1086 |
label="Speaker Change Sensitivity",
|
| 1087 |
-
info="Lower = more sensitive
|
| 1088 |
)
|
| 1089 |
|
| 1090 |
max_speakers_slider = gr.Slider(
|
| 1091 |
minimum=2,
|
| 1092 |
-
maximum=
|
| 1093 |
step=1,
|
| 1094 |
-
value=
|
| 1095 |
-
label="Maximum
|
| 1096 |
)
|
| 1097 |
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
# Audio settings
|
| 1101 |
-
gr.Markdown("## 🔊 Audio Configuration")
|
| 1102 |
-
with gr.Accordion("Advanced Audio Settings", open=False):
|
| 1103 |
-
gr.Markdown("""
|
| 1104 |
-
**Current Configuration:**
|
| 1105 |
-
- Sample Rate: 16kHz
|
| 1106 |
-
- Audio Format: 16-bit PCM → Float32 (via AudioProcessor)
|
| 1107 |
-
- Channels: Mono (stereo converted automatically)
|
| 1108 |
-
- Buffer Size: 1024 samples for real-time processing
|
| 1109 |
-
- Processing: Uses existing AudioProcessor.extract_embedding()
|
| 1110 |
-
""")
|
| 1111 |
|
| 1112 |
# Instructions
|
| 1113 |
-
gr.Markdown("## 📝 How to Use")
|
| 1114 |
gr.Markdown("""
|
| 1115 |
-
|
| 1116 |
-
|
| 1117 |
-
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1121 |
""")
|
| 1122 |
-
|
| 1123 |
-
# Performance tips
|
| 1124 |
-
with gr.Accordion("💡 Performance Tips", open=False):
|
| 1125 |
-
gr.Markdown("""
|
| 1126 |
-
- Use Chrome/Edge for best FastRTC performance
|
| 1127 |
-
- Ensure stable internet connection
|
| 1128 |
-
- Use headphones to prevent echo
|
| 1129 |
-
- Position microphone 6-12 inches away
|
| 1130 |
-
- Minimize background noise
|
| 1131 |
-
- Allow browser microphone access
|
| 1132 |
-
""")
|
| 1133 |
-
|
| 1134 |
-
# Speaker color legend
|
| 1135 |
-
gr.Markdown("## 🎨 Speaker Colors")
|
| 1136 |
-
speaker_colors = [
|
| 1137 |
-
("#FF6B6B", "Red"),
|
| 1138 |
-
("#4ECDC4", "Teal"),
|
| 1139 |
-
("#45B7D1", "Blue"),
|
| 1140 |
-
("#96CEB4", "Green"),
|
| 1141 |
-
("#FFEAA7", "Yellow"),
|
| 1142 |
-
("#DDA0DD", "Plum"),
|
| 1143 |
-
("#98D8C8", "Mint"),
|
| 1144 |
-
("#F7DC6F", "Gold")
|
| 1145 |
-
]
|
| 1146 |
-
|
| 1147 |
-
color_html = ""
|
| 1148 |
-
for i, (color, name) in enumerate(speaker_colors[:4]):
|
| 1149 |
-
color_html += f'<div style="margin: 3px 0;"><span style="color:{color}; font-size: 16px; font-weight: bold;">●</span> Speaker {i+1} ({name})</div>'
|
| 1150 |
-
|
| 1151 |
-
gr.HTML(f"<div style='font-size: 14px;'>{color_html}</div>")
|
| 1152 |
-
|
| 1153 |
-
# Auto-refresh conversation and status
|
| 1154 |
-
def refresh_display():
|
| 1155 |
-
try:
|
| 1156 |
-
conversation = get_conversation()
|
| 1157 |
-
status = get_status()
|
| 1158 |
-
return conversation, status
|
| 1159 |
-
except Exception as e:
|
| 1160 |
-
error_msg = f"Error refreshing display: {str(e)}"
|
| 1161 |
-
return f"<i>{error_msg}</i>", error_msg
|
| 1162 |
|
| 1163 |
# Event handlers
|
| 1164 |
def on_initialize():
|
| 1165 |
-
|
| 1166 |
-
|
| 1167 |
-
|
| 1168 |
-
|
| 1169 |
-
|
| 1170 |
-
|
| 1171 |
-
return (
|
| 1172 |
-
result, # status_output
|
| 1173 |
-
gr.update(interactive=success), # start_btn
|
| 1174 |
-
gr.update(interactive=success), # clear_btn
|
| 1175 |
-
conversation, # conversation_output
|
| 1176 |
-
)
|
| 1177 |
-
except Exception as e:
|
| 1178 |
-
error_msg = f"❌ Initialization failed: {str(e)}"
|
| 1179 |
-
return (
|
| 1180 |
-
error_msg,
|
| 1181 |
-
gr.update(interactive=False),
|
| 1182 |
-
gr.update(interactive=False),
|
| 1183 |
-
"<i>System not ready</i>",
|
| 1184 |
-
)
|
| 1185 |
|
| 1186 |
def on_start():
|
| 1187 |
-
|
| 1188 |
-
|
| 1189 |
-
return (
|
| 1190 |
-
result, # status_output
|
| 1191 |
-
gr.update(interactive=False), # start_btn
|
| 1192 |
-
gr.update(interactive=True), # stop_btn
|
| 1193 |
-
)
|
| 1194 |
-
except Exception as e:
|
| 1195 |
-
error_msg = f"❌ Failed to start: {str(e)}"
|
| 1196 |
-
return (
|
| 1197 |
-
error_msg,
|
| 1198 |
-
gr.update(interactive=True),
|
| 1199 |
-
gr.update(interactive=False),
|
| 1200 |
-
)
|
| 1201 |
|
| 1202 |
def on_stop():
|
| 1203 |
-
|
| 1204 |
-
|
| 1205 |
-
return (
|
| 1206 |
-
result, # status_output
|
| 1207 |
-
gr.update(interactive=True), # start_btn
|
| 1208 |
-
gr.update(interactive=False), # stop_btn
|
| 1209 |
-
)
|
| 1210 |
-
except Exception as e:
|
| 1211 |
-
error_msg = f"❌ Failed to stop: {str(e)}"
|
| 1212 |
-
return (
|
| 1213 |
-
error_msg,
|
| 1214 |
-
gr.update(interactive=False),
|
| 1215 |
-
gr.update(interactive=True),
|
| 1216 |
-
)
|
| 1217 |
|
| 1218 |
def on_clear():
|
| 1219 |
-
|
| 1220 |
-
|
| 1221 |
-
conversation, status = refresh_display()
|
| 1222 |
-
return result, conversation
|
| 1223 |
-
except Exception as e:
|
| 1224 |
-
error_msg = f"❌ Failed to clear: {str(e)}"
|
| 1225 |
-
return error_msg, "<i>Error clearing conversation</i>"
|
| 1226 |
|
| 1227 |
def on_update_settings(threshold, max_speakers):
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
return result
|
| 1231 |
-
except Exception as e:
|
| 1232 |
-
return f"❌ Failed to update settings: {str(e)}"
|
| 1233 |
|
| 1234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1235 |
init_btn.click(
|
| 1236 |
-
on_initialize,
|
| 1237 |
-
|
|
|
|
| 1238 |
)
|
| 1239 |
|
| 1240 |
start_btn.click(
|
| 1241 |
-
on_start,
|
|
|
|
| 1242 |
outputs=[status_output, start_btn, stop_btn]
|
| 1243 |
)
|
| 1244 |
|
| 1245 |
stop_btn.click(
|
| 1246 |
-
on_stop,
|
|
|
|
| 1247 |
outputs=[status_output, start_btn, stop_btn]
|
| 1248 |
)
|
| 1249 |
|
| 1250 |
clear_btn.click(
|
| 1251 |
-
on_clear,
|
| 1252 |
-
|
|
|
|
| 1253 |
)
|
| 1254 |
|
| 1255 |
-
|
| 1256 |
-
on_update_settings,
|
| 1257 |
inputs=[threshold_slider, max_speakers_slider],
|
| 1258 |
outputs=[status_output]
|
| 1259 |
)
|
| 1260 |
|
| 1261 |
-
# Auto-refresh
|
| 1262 |
-
|
| 1263 |
-
|
| 1264 |
-
|
| 1265 |
-
outputs=[conversation_output, status_output]
|
|
|
|
| 1266 |
)
|
| 1267 |
|
| 1268 |
return interface
|
| 1269 |
|
| 1270 |
|
| 1271 |
-
# FastAPI
|
| 1272 |
def create_fastapi_app():
|
| 1273 |
-
"""Create FastAPI app with
|
| 1274 |
-
app = FastAPI(
|
| 1275 |
-
title="Real-time Speaker Diarization",
|
| 1276 |
-
description="Real-time speech recognition with speaker diarization using FastRTC",
|
| 1277 |
-
version="1.0.0"
|
| 1278 |
-
)
|
| 1279 |
|
| 1280 |
-
|
| 1281 |
-
|
|
|
|
| 1282 |
|
| 1283 |
-
@
|
| 1284 |
-
async def
|
| 1285 |
-
|
| 1286 |
-
|
| 1287 |
-
|
| 1288 |
-
|
| 1289 |
-
|
| 1290 |
-
|
| 1291 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1292 |
|
| 1293 |
-
@
|
| 1294 |
async def get_conversation_api():
|
| 1295 |
-
"""Get current conversation"""
|
| 1296 |
try:
|
| 1297 |
return {
|
| 1298 |
-
"conversation":
|
| 1299 |
-
"
|
| 1300 |
-
"is_recording": diarization_system.is_running if diarization_system and hasattr(diarization_system, 'is_running') else False,
|
| 1301 |
-
"timestamp": time.time()
|
| 1302 |
}
|
| 1303 |
except Exception as e:
|
| 1304 |
-
return {"error": str(e)
|
| 1305 |
|
| 1306 |
-
@
|
| 1307 |
-
async def
|
| 1308 |
-
"""Control recording actions"""
|
| 1309 |
try:
|
| 1310 |
-
|
| 1311 |
-
|
| 1312 |
-
|
| 1313 |
-
|
| 1314 |
-
|
| 1315 |
-
|
| 1316 |
-
|
| 1317 |
-
|
| 1318 |
-
|
| 1319 |
-
|
| 1320 |
-
|
| 1321 |
-
return {
|
| 1322 |
-
|
| 1323 |
-
|
| 1324 |
-
|
| 1325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1326 |
except Exception as e:
|
| 1327 |
-
return {"error": str(e), "
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1328 |
|
| 1329 |
-
app.include_router(router)
|
| 1330 |
return app
|
| 1331 |
|
| 1332 |
|
| 1333 |
-
#
|
| 1334 |
-
|
| 1335 |
-
|
| 1336 |
-
try:
|
| 1337 |
-
if audio_handler is None:
|
| 1338 |
-
print("Warning: Audio handler not initialized. Initialize system first.")
|
| 1339 |
-
return None
|
| 1340 |
-
|
| 1341 |
-
# Get HuggingFace token for TURN server (optional)
|
| 1342 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 1343 |
-
|
| 1344 |
-
# Configure RTC settings
|
| 1345 |
-
rtc_config = {
|
| 1346 |
-
"iceServers": [
|
| 1347 |
-
{"urls": "stun:stun.l.google.com:19302"},
|
| 1348 |
-
{"urls": "stun:stun1.l.google.com:19302"}
|
| 1349 |
-
]
|
| 1350 |
-
}
|
| 1351 |
-
|
| 1352 |
-
# Create FastRTC stream
|
| 1353 |
-
stream = Stream(
|
| 1354 |
-
handler=audio_handler,
|
| 1355 |
-
rtc_configuration=rtc_config,
|
| 1356 |
-
modality="audio",
|
| 1357 |
-
mode="receive" # We only receive audio, don't send
|
| 1358 |
-
)
|
| 1359 |
-
|
| 1360 |
-
# Mount the stream
|
| 1361 |
-
app.mount("/stream", stream)
|
| 1362 |
-
print("✅ FastRTC stream configured successfully!")
|
| 1363 |
-
return stream
|
| 1364 |
-
|
| 1365 |
-
except Exception as e:
|
| 1366 |
-
print(f"⚠️ Warning: Failed to setup FastRTC stream: {e}")
|
| 1367 |
-
print("Audio streaming may not work properly.")
|
| 1368 |
-
return None
|
| 1369 |
-
|
| 1370 |
-
|
| 1371 |
-
# Main application setup
|
| 1372 |
-
def create_app(diarization_sys=None):
|
| 1373 |
-
"""Create the complete application"""
|
| 1374 |
-
global diarization_system
|
| 1375 |
-
|
| 1376 |
-
# Set the diarization system
|
| 1377 |
-
if diarization_sys is not None:
|
| 1378 |
-
diarization_system = diarization_sys
|
| 1379 |
|
| 1380 |
-
|
| 1381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1382 |
|
| 1383 |
-
|
| 1384 |
-
gradio_interface = create_interface()
|
| 1385 |
|
| 1386 |
-
|
| 1387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1388 |
|
| 1389 |
-
|
| 1390 |
-
|
| 1391 |
-
|
| 1392 |
-
|
| 1393 |
-
diarization_system.initialize_models()
|
| 1394 |
-
|
| 1395 |
-
# Create audio handler if needed
|
| 1396 |
-
global audio_handler
|
| 1397 |
-
if audio_handler is None:
|
| 1398 |
-
audio_handler = DiarizationHandler(diarization_system)
|
| 1399 |
-
|
| 1400 |
-
# Setup and mount the FastRTC stream
|
| 1401 |
-
setup_fastrtc_stream(app)
|
| 1402 |
|
| 1403 |
-
|
| 1404 |
-
|
| 1405 |
-
|
| 1406 |
-
# Entry point for HuggingFace Spaces
|
| 1407 |
-
if __name__ == "__main__":
|
| 1408 |
-
try:
|
| 1409 |
-
# Import your diarization system here
|
| 1410 |
-
# from your_module import RealtimeSpeakerDiarization
|
| 1411 |
-
diarization_system = RealtimeSpeakerDiarization()
|
| 1412 |
|
| 1413 |
-
#
|
| 1414 |
-
app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1415 |
|
| 1416 |
-
#
|
|
|
|
| 1417 |
interface.launch(
|
| 1418 |
-
server_name=
|
| 1419 |
-
server_port=
|
| 1420 |
share=True,
|
| 1421 |
-
show_error=True
|
| 1422 |
-
quiet=False
|
| 1423 |
)
|
| 1424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1425 |
except Exception as e:
|
| 1426 |
-
|
| 1427 |
-
|
| 1428 |
-
|
| 1429 |
-
|
| 1430 |
-
# Fallback - launch just Gradio interface
|
| 1431 |
-
try:
|
| 1432 |
-
interface = create_interface()
|
| 1433 |
-
interface.launch(
|
| 1434 |
-
server_name="0.0.0.0",
|
| 1435 |
-
server_port=int(os.environ.get("PORT", 7860)),
|
| 1436 |
-
share=False
|
| 1437 |
-
)
|
| 1438 |
-
except Exception as fallback_error:
|
| 1439 |
-
print(f"Fallback launch also failed: {fallback_error}")
|
| 1440 |
|
|
|
|
|
|
|
| 1441 |
|
| 1442 |
-
#
|
| 1443 |
-
|
| 1444 |
-
"""Initialize the application with your diarization system"""
|
| 1445 |
-
global diarization_system
|
| 1446 |
-
diarization_system = diarization_sys
|
| 1447 |
-
return create_app(diarization_sys)
|
|
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI, APIRouter
|
| 13 |
+
from fastrtc import Stream, AsyncStreamHandler
|
| 14 |
import json
|
|
|
|
|
|
|
| 15 |
import asyncio
|
| 16 |
import uvicorn
|
|
|
|
| 17 |
from queue import Queue
|
| 18 |
+
import logging
|
| 19 |
+
|
| 20 |
+
# Set up logging
|
| 21 |
+
logging.basicConfig(level=logging.INFO)
|
| 22 |
+
logger = logging.getLogger(__name__)
|
| 23 |
+
|
| 24 |
# Simplified configuration parameters
|
| 25 |
SILENCE_THRESHS = [0, 0.4]
|
| 26 |
FINAL_TRANSCRIPTION_MODEL = "distil-large-v3"
|
|
|
|
| 34 |
PRE_RECORDING_BUFFER_DURATION = 0.35
|
| 35 |
|
| 36 |
# Speaker change detection parameters
|
| 37 |
+
DEFAULT_CHANGE_THRESHOLD = 0.65
|
| 38 |
EMBEDDING_HISTORY_SIZE = 5
|
| 39 |
+
MIN_SEGMENT_DURATION = 1.5
|
| 40 |
DEFAULT_MAX_SPEAKERS = 4
|
| 41 |
+
ABSOLUTE_MAX_SPEAKERS = 8
|
| 42 |
|
| 43 |
# Global variables
|
|
|
|
| 44 |
SAMPLE_RATE = 16000
|
| 45 |
+
BUFFER_SIZE = 1024
|
| 46 |
CHANNELS = 1
|
| 47 |
|
| 48 |
+
# Speaker colors - more distinguishable colors
|
| 49 |
SPEAKER_COLORS = [
|
| 50 |
+
"#FF6B6B", # Red
|
| 51 |
+
"#4ECDC4", # Teal
|
| 52 |
+
"#45B7D1", # Blue
|
| 53 |
+
"#96CEB4", # Green
|
| 54 |
+
"#FFEAA7", # Yellow
|
| 55 |
+
"#DDA0DD", # Plum
|
| 56 |
+
"#98D8C8", # Mint
|
| 57 |
+
"#F7DC6F", # Gold
|
|
|
|
|
|
|
| 58 |
]
|
| 59 |
|
| 60 |
SPEAKER_COLOR_NAMES = [
|
| 61 |
+
"Red", "Teal", "Blue", "Green", "Yellow", "Plum", "Mint", "Gold"
|
|
|
|
| 62 |
]
|
| 63 |
|
| 64 |
|
|
|
|
| 72 |
self.cache_dir = os.path.join(os.path.expanduser("~"), ".cache", "speechbrain")
|
| 73 |
os.makedirs(self.cache_dir, exist_ok=True)
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
def load_model(self):
|
| 76 |
"""Load the ECAPA-TDNN model"""
|
| 77 |
try:
|
| 78 |
from speechbrain.pretrained import EncoderClassifier
|
| 79 |
|
|
|
|
|
|
|
| 80 |
self.model = EncoderClassifier.from_hparams(
|
| 81 |
source="speechbrain/spkrec-ecapa-voxceleb",
|
| 82 |
savedir=self.cache_dir,
|
|
|
|
| 84 |
)
|
| 85 |
|
| 86 |
self.model_loaded = True
|
| 87 |
+
logger.info("ECAPA-TDNN model loaded successfully!")
|
| 88 |
return True
|
| 89 |
except Exception as e:
|
| 90 |
+
logger.error(f"Error loading ECAPA-TDNN model: {e}")
|
| 91 |
return False
|
| 92 |
|
| 93 |
def embed_utterance(self, audio, sr=16000):
|
|
|
|
| 97 |
|
| 98 |
try:
|
| 99 |
if isinstance(audio, np.ndarray):
|
| 100 |
+
# Ensure audio is float32 and properly normalized
|
| 101 |
+
audio = audio.astype(np.float32)
|
| 102 |
+
if np.max(np.abs(audio)) > 1.0:
|
| 103 |
+
audio = audio / np.max(np.abs(audio))
|
| 104 |
+
waveform = torch.tensor(audio).unsqueeze(0)
|
| 105 |
else:
|
| 106 |
waveform = audio.unsqueeze(0)
|
| 107 |
|
| 108 |
+
# Resample if necessary
|
| 109 |
if sr != 16000:
|
| 110 |
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
|
| 111 |
|
|
|
|
| 114 |
|
| 115 |
return embedding.squeeze().cpu().numpy()
|
| 116 |
except Exception as e:
|
| 117 |
+
logger.error(f"Error extracting embedding: {e}")
|
| 118 |
return np.zeros(self.embedding_dim)
|
| 119 |
|
| 120 |
|
|
|
|
| 122 |
"""Processes audio data to extract speaker embeddings"""
|
| 123 |
def __init__(self, encoder):
|
| 124 |
self.encoder = encoder
|
| 125 |
+
self.audio_buffer = []
|
| 126 |
+
self.min_audio_length = int(SAMPLE_RATE * 1.0) # Minimum 1 second of audio
|
| 127 |
|
| 128 |
+
def add_audio_chunk(self, audio_chunk):
|
| 129 |
+
"""Add audio chunk to buffer"""
|
| 130 |
+
self.audio_buffer.extend(audio_chunk)
|
| 131 |
+
|
| 132 |
+
# Keep buffer from getting too large
|
| 133 |
+
max_buffer_size = int(SAMPLE_RATE * 10) # 10 seconds max
|
| 134 |
+
if len(self.audio_buffer) > max_buffer_size:
|
| 135 |
+
self.audio_buffer = self.audio_buffer[-max_buffer_size:]
|
| 136 |
+
|
| 137 |
+
def extract_embedding_from_buffer(self):
|
| 138 |
+
"""Extract embedding from current audio buffer"""
|
| 139 |
+
if len(self.audio_buffer) < self.min_audio_length:
|
| 140 |
+
return None
|
| 141 |
|
| 142 |
+
try:
|
| 143 |
+
# Use the last portion of the buffer for embedding
|
| 144 |
+
audio_segment = np.array(self.audio_buffer[-self.min_audio_length:], dtype=np.float32)
|
| 145 |
|
| 146 |
+
# Normalize audio
|
| 147 |
+
if np.max(np.abs(audio_segment)) > 0:
|
| 148 |
+
audio_segment = audio_segment / np.max(np.abs(audio_segment))
|
| 149 |
+
else:
|
| 150 |
+
return None
|
| 151 |
|
| 152 |
+
embedding = self.encoder.embed_utterance(audio_segment)
|
| 153 |
return embedding
|
| 154 |
except Exception as e:
|
| 155 |
+
logger.error(f"Embedding extraction error: {e}")
|
| 156 |
+
return None
|
| 157 |
|
| 158 |
|
| 159 |
class SpeakerChangeDetector:
|
| 160 |
+
"""Improved speaker change detector"""
|
| 161 |
def __init__(self, embedding_dim=192, change_threshold=DEFAULT_CHANGE_THRESHOLD, max_speakers=DEFAULT_MAX_SPEAKERS):
|
| 162 |
self.embedding_dim = embedding_dim
|
| 163 |
self.change_threshold = change_threshold
|
| 164 |
self.max_speakers = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 165 |
self.current_speaker = 0
|
|
|
|
|
|
|
|
|
|
| 166 |
self.speaker_embeddings = [[] for _ in range(self.max_speakers)]
|
| 167 |
+
self.speaker_centroids = [None] * self.max_speakers
|
| 168 |
+
self.last_change_time = time.time()
|
| 169 |
+
self.last_similarity = 1.0
|
| 170 |
self.active_speakers = set([0])
|
| 171 |
+
self.segment_counter = 0
|
| 172 |
|
| 173 |
def set_max_speakers(self, max_speakers):
|
| 174 |
"""Update the maximum number of speakers"""
|
| 175 |
new_max = min(max_speakers, ABSOLUTE_MAX_SPEAKERS)
|
| 176 |
|
| 177 |
if new_max < self.max_speakers:
|
| 178 |
+
# Remove speakers beyond the new limit
|
| 179 |
for speaker_id in list(self.active_speakers):
|
| 180 |
if speaker_id >= new_max:
|
| 181 |
self.active_speakers.discard(speaker_id)
|
|
|
|
| 183 |
if self.current_speaker >= new_max:
|
| 184 |
self.current_speaker = 0
|
| 185 |
|
| 186 |
+
# Resize arrays
|
| 187 |
if new_max > self.max_speakers:
|
|
|
|
| 188 |
self.speaker_embeddings.extend([[] for _ in range(new_max - self.max_speakers)])
|
| 189 |
+
self.speaker_centroids.extend([None] * (new_max - self.max_speakers))
|
| 190 |
else:
|
|
|
|
| 191 |
self.speaker_embeddings = self.speaker_embeddings[:new_max]
|
| 192 |
+
self.speaker_centroids = self.speaker_centroids[:new_max]
|
| 193 |
|
| 194 |
self.max_speakers = new_max
|
| 195 |
|
| 196 |
def set_change_threshold(self, threshold):
|
| 197 |
"""Update the threshold for detecting speaker changes"""
|
| 198 |
+
self.change_threshold = max(0.1, min(threshold, 0.95))
|
| 199 |
|
| 200 |
def add_embedding(self, embedding, timestamp=None):
|
| 201 |
+
"""Add a new embedding and detect speaker changes"""
|
| 202 |
current_time = timestamp or time.time()
|
| 203 |
+
self.segment_counter += 1
|
| 204 |
+
|
| 205 |
+
# Initialize first speaker
|
| 206 |
+
if not self.speaker_embeddings[0]:
|
| 207 |
+
self.speaker_embeddings[0].append(embedding)
|
| 208 |
+
self.speaker_centroids[0] = embedding.copy()
|
| 209 |
+
self.active_speakers.add(0)
|
| 210 |
+
return 0, 1.0
|
| 211 |
+
|
| 212 |
+
# Calculate similarity with current speaker
|
| 213 |
+
current_centroid = self.speaker_centroids[self.current_speaker]
|
| 214 |
+
if current_centroid is not None:
|
| 215 |
+
similarity = 1.0 - cosine(embedding, current_centroid)
|
| 216 |
else:
|
| 217 |
+
similarity = 0.5
|
| 218 |
|
| 219 |
self.last_similarity = similarity
|
| 220 |
|
| 221 |
+
# Check for speaker change
|
| 222 |
time_since_last_change = current_time - self.last_change_time
|
| 223 |
+
speaker_changed = False
|
| 224 |
|
| 225 |
+
if time_since_last_change >= MIN_SEGMENT_DURATION and similarity < self.change_threshold:
|
| 226 |
+
# Find best matching speaker
|
| 227 |
+
best_speaker = self.current_speaker
|
| 228 |
+
best_similarity = similarity
|
| 229 |
+
|
| 230 |
+
for speaker_id in self.active_speakers:
|
| 231 |
+
if speaker_id == self.current_speaker:
|
| 232 |
+
continue
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
centroid = self.speaker_centroids[speaker_id]
|
| 235 |
+
if centroid is not None:
|
| 236 |
+
speaker_similarity = 1.0 - cosine(embedding, centroid)
|
| 237 |
+
if speaker_similarity > best_similarity and speaker_similarity > self.change_threshold:
|
| 238 |
+
best_similarity = speaker_similarity
|
| 239 |
+
best_speaker = speaker_id
|
| 240 |
+
|
| 241 |
+
# If no good match found and we can add a new speaker
|
| 242 |
+
if best_speaker == self.current_speaker and len(self.active_speakers) < self.max_speakers:
|
| 243 |
+
for new_id in range(self.max_speakers):
|
| 244 |
+
if new_id not in self.active_speakers:
|
| 245 |
+
best_speaker = new_id
|
| 246 |
+
self.active_speakers.add(new_id)
|
| 247 |
+
break
|
| 248 |
+
|
| 249 |
+
if best_speaker != self.current_speaker:
|
| 250 |
+
self.current_speaker = best_speaker
|
| 251 |
+
self.last_change_time = current_time
|
| 252 |
+
speaker_changed = True
|
| 253 |
+
|
| 254 |
+
# Update speaker embeddings and centroids
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
self.speaker_embeddings[self.current_speaker].append(embedding)
|
|
|
|
| 256 |
|
| 257 |
+
# Keep only recent embeddings (sliding window)
|
| 258 |
+
max_embeddings = 20
|
| 259 |
+
if len(self.speaker_embeddings[self.current_speaker]) > max_embeddings:
|
| 260 |
+
self.speaker_embeddings[self.current_speaker] = self.speaker_embeddings[self.current_speaker][-max_embeddings:]
|
| 261 |
+
|
| 262 |
+
# Update centroid
|
| 263 |
if self.speaker_embeddings[self.current_speaker]:
|
| 264 |
+
self.speaker_centroids[self.current_speaker] = np.mean(
|
| 265 |
self.speaker_embeddings[self.current_speaker], axis=0
|
| 266 |
)
|
| 267 |
|
|
|
|
| 274 |
return "#FFFFFF"
|
| 275 |
|
| 276 |
def get_status_info(self):
|
| 277 |
+
"""Return status information"""
|
| 278 |
speaker_counts = [len(self.speaker_embeddings[i]) for i in range(self.max_speakers)]
|
| 279 |
|
| 280 |
return {
|
|
|
|
| 283 |
"active_speakers": len(self.active_speakers),
|
| 284 |
"max_speakers": self.max_speakers,
|
| 285 |
"last_similarity": self.last_similarity,
|
| 286 |
+
"threshold": self.change_threshold,
|
| 287 |
+
"segment_counter": self.segment_counter
|
| 288 |
}
|
| 289 |
|
| 290 |
|
|
|
|
| 294 |
self.audio_processor = None
|
| 295 |
self.speaker_detector = None
|
| 296 |
self.recorder = None
|
| 297 |
+
self.sentence_queue = queue.Queue()
|
| 298 |
self.full_sentences = []
|
| 299 |
self.sentence_speakers = []
|
| 300 |
self.pending_sentences = []
|
| 301 |
+
self.current_conversation = ""
|
|
|
|
| 302 |
self.is_running = False
|
| 303 |
self.change_threshold = DEFAULT_CHANGE_THRESHOLD
|
| 304 |
self.max_speakers = DEFAULT_MAX_SPEAKERS
|
| 305 |
+
self.last_transcription = ""
|
| 306 |
+
self.transcription_lock = threading.Lock()
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
def initialize_models(self):
|
| 309 |
"""Initialize the speaker encoder model"""
|
| 310 |
try:
|
| 311 |
device_str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 312 |
+
logger.info(f"Using device: {device_str}")
|
| 313 |
|
| 314 |
self.encoder = SpeechBrainEncoder(device=device_str)
|
| 315 |
+
success = self.encoder.load_model()
|
| 316 |
|
| 317 |
+
if success:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
self.audio_processor = AudioProcessor(self.encoder)
|
| 319 |
self.speaker_detector = SpeakerChangeDetector(
|
| 320 |
embedding_dim=self.encoder.embedding_dim,
|
| 321 |
change_threshold=self.change_threshold,
|
| 322 |
max_speakers=self.max_speakers
|
| 323 |
)
|
| 324 |
+
logger.info("Models initialized successfully!")
|
| 325 |
return True
|
| 326 |
else:
|
| 327 |
+
logger.error("Failed to load models")
|
| 328 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
except Exception as e:
|
| 330 |
+
logger.error(f"Model initialization error: {e}")
|
| 331 |
return False
|
| 332 |
|
| 333 |
def live_text_detected(self, text):
|
| 334 |
"""Callback for real-time transcription updates"""
|
| 335 |
+
with self.transcription_lock:
|
| 336 |
+
self.last_transcription = text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
def process_final_text(self, text):
|
| 339 |
"""Process final transcribed text with speaker embedding"""
|
| 340 |
text = text.strip()
|
| 341 |
if text:
|
| 342 |
try:
|
| 343 |
+
# Get audio data for this transcription
|
| 344 |
+
audio_bytes = getattr(self.recorder, 'last_transcription_bytes', None)
|
| 345 |
+
if audio_bytes:
|
| 346 |
+
self.sentence_queue.put((text, audio_bytes))
|
| 347 |
+
else:
|
| 348 |
+
# If no audio bytes, use current speaker
|
| 349 |
+
self.sentence_queue.put((text, None))
|
| 350 |
+
|
| 351 |
except Exception as e:
|
| 352 |
+
logger.error(f"Error processing final text: {e}")
|
| 353 |
|
| 354 |
def process_sentence_queue(self):
|
| 355 |
"""Process sentences in the queue for speaker detection"""
|
| 356 |
while self.is_running:
|
| 357 |
try:
|
| 358 |
+
text, audio_bytes = self.sentence_queue.get(timeout=1)
|
| 359 |
|
| 360 |
+
current_speaker = self.speaker_detector.current_speaker
|
|
|
|
| 361 |
|
| 362 |
+
if audio_bytes:
|
| 363 |
+
# Convert audio data and extract embedding
|
| 364 |
+
audio_int16 = np.frombuffer(audio_bytes, dtype=np.int16)
|
| 365 |
+
audio_float = audio_int16.astype(np.float32) / 32768.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
# Extract embedding
|
| 368 |
+
embedding = self.audio_processor.encoder.embed_utterance(audio_float)
|
| 369 |
+
if embedding is not None:
|
| 370 |
+
current_speaker, similarity = self.speaker_detector.add_embedding(embedding)
|
| 371 |
+
|
| 372 |
+
# Store sentence with speaker
|
| 373 |
+
with self.transcription_lock:
|
| 374 |
+
self.full_sentences.append((text, current_speaker))
|
| 375 |
+
self.update_conversation_display()
|
|
|
|
| 376 |
|
| 377 |
except queue.Empty:
|
| 378 |
continue
|
| 379 |
except Exception as e:
|
| 380 |
+
logger.error(f"Error processing sentence: {e}")
|
| 381 |
+
|
| 382 |
+
def update_conversation_display(self):
|
| 383 |
+
"""Update the conversation display"""
|
| 384 |
+
try:
|
| 385 |
+
sentences_with_style = []
|
| 386 |
+
|
| 387 |
+
for sentence_text, speaker_id in self.full_sentences:
|
| 388 |
+
color = self.speaker_detector.get_color_for_speaker(speaker_id)
|
| 389 |
+
speaker_name = f"Speaker {speaker_id + 1}"
|
| 390 |
+
sentences_with_style.append(
|
| 391 |
+
f'<span style="color:{color}; font-weight: bold;">{speaker_name}:</span> '
|
| 392 |
+
f'<span style="color:#333333;">{sentence_text}</span>'
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
# Add current transcription if available
|
| 396 |
+
if self.last_transcription:
|
| 397 |
+
current_color = self.speaker_detector.get_color_for_speaker(self.speaker_detector.current_speaker)
|
| 398 |
+
current_speaker = f"Speaker {self.speaker_detector.current_speaker + 1}"
|
| 399 |
+
sentences_with_style.append(
|
| 400 |
+
f'<span style="color:{current_color}; font-weight: bold; opacity: 0.7;">{current_speaker}:</span> '
|
| 401 |
+
f'<span style="color:#666666; font-style: italic;">{self.last_transcription}...</span>'
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
if sentences_with_style:
|
| 405 |
+
self.current_conversation = "<br><br>".join(sentences_with_style)
|
| 406 |
+
else:
|
| 407 |
+
self.current_conversation = "<i>Waiting for speech input...</i>"
|
| 408 |
+
|
| 409 |
+
except Exception as e:
|
| 410 |
+
logger.error(f"Error updating conversation display: {e}")
|
| 411 |
+
self.current_conversation = f"<i>Error: {str(e)}</i>"
|
| 412 |
|
| 413 |
def start_recording(self):
|
| 414 |
"""Start the recording and transcription process"""
|
|
|
|
| 416 |
return "Please initialize models first!"
|
| 417 |
|
| 418 |
try:
|
| 419 |
+
# Setup recorder configuration
|
| 420 |
recorder_config = {
|
| 421 |
'spinner': False,
|
| 422 |
+
'use_microphone': True, # Changed to True for direct microphone input
|
| 423 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 424 |
'language': TRANSCRIPTION_LANGUAGE,
|
| 425 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
|
|
|
| 429 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 430 |
'min_gap_between_recordings': 0,
|
| 431 |
'enable_realtime_transcription': True,
|
| 432 |
+
'realtime_processing_pause': 0.1,
|
| 433 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 434 |
'on_realtime_transcription_update': self.live_text_detected,
|
| 435 |
'beam_size': FINAL_BEAM_SIZE,
|
| 436 |
'beam_size_realtime': REALTIME_BEAM_SIZE,
|
|
|
|
| 437 |
'sample_rate': SAMPLE_RATE,
|
|
|
|
| 438 |
}
|
| 439 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
self.recorder = AudioToTextRecorder(**recorder_config)
|
| 441 |
|
| 442 |
+
# Start processing threads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
self.is_running = True
|
| 444 |
self.sentence_thread = threading.Thread(target=self.process_sentence_queue, daemon=True)
|
| 445 |
self.sentence_thread.start()
|
| 446 |
|
|
|
|
| 447 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 448 |
self.transcription_thread.start()
|
| 449 |
|
| 450 |
+
return "Recording started successfully!"
|
| 451 |
|
| 452 |
except Exception as e:
|
| 453 |
+
logger.error(f"Error starting recording: {e}")
|
| 454 |
+
return f"Error starting recording: {e}"
|
|
|
|
|
|
|
| 455 |
|
| 456 |
def run_transcription(self):
|
| 457 |
"""Run the transcription loop"""
|
|
|
|
| 459 |
while self.is_running:
|
| 460 |
self.recorder.text(self.process_final_text)
|
| 461 |
except Exception as e:
|
| 462 |
+
logger.error(f"Transcription error: {e}")
|
| 463 |
|
| 464 |
def stop_recording(self):
|
| 465 |
"""Stop the recording process"""
|
| 466 |
self.is_running = False
|
| 467 |
if self.recorder:
|
| 468 |
self.recorder.stop()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
return "Recording stopped!"
|
| 470 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
def clear_conversation(self):
|
| 472 |
"""Clear all conversation data"""
|
| 473 |
+
with self.transcription_lock:
|
| 474 |
+
self.full_sentences = []
|
| 475 |
+
self.last_transcription = ""
|
| 476 |
+
self.current_conversation = "Conversation cleared!"
|
|
|
|
|
|
|
| 477 |
|
| 478 |
if self.speaker_detector:
|
| 479 |
self.speaker_detector = SpeakerChangeDetector(
|
|
|
|
| 496 |
return f"Settings updated: Threshold={threshold:.2f}, Max Speakers={max_speakers}"
|
| 497 |
|
| 498 |
def get_formatted_conversation(self):
|
| 499 |
+
"""Get the formatted conversation"""
|
| 500 |
+
return self.current_conversation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
|
| 502 |
def get_status_info(self):
|
| 503 |
"""Get current status information"""
|
|
|
|
| 513 |
f"**Last Similarity:** {status['last_similarity']:.3f}",
|
| 514 |
f"**Change Threshold:** {status['threshold']:.2f}",
|
| 515 |
f"**Total Sentences:** {len(self.full_sentences)}",
|
| 516 |
+
f"**Segments Processed:** {status['segment_counter']}",
|
| 517 |
"",
|
| 518 |
+
"**Speaker Activity:**"
|
| 519 |
]
|
| 520 |
|
| 521 |
for i in range(status['max_speakers']):
|
| 522 |
color_name = SPEAKER_COLOR_NAMES[i] if i < len(SPEAKER_COLOR_NAMES) else f"Speaker {i+1}"
|
| 523 |
+
count = status['speaker_counts'][i]
|
| 524 |
+
active = "🟢" if count > 0 else "⚫"
|
| 525 |
+
status_lines.append(f"{active} Speaker {i+1} ({color_name}): {count} segments")
|
| 526 |
|
| 527 |
return "\n".join(status_lines)
|
| 528 |
|
| 529 |
except Exception as e:
|
| 530 |
return f"Error getting status: {e}"
|
| 531 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 532 |
def process_audio_chunk(self, audio_data, sample_rate=16000):
|
| 533 |
"""Process audio chunk from FastRTC input"""
|
| 534 |
+
if not self.is_running or self.audio_processor is None:
|
| 535 |
return
|
| 536 |
|
| 537 |
try:
|
| 538 |
+
# Ensure audio is float32
|
| 539 |
+
if isinstance(audio_data, np.ndarray):
|
| 540 |
+
if audio_data.dtype != np.float32:
|
| 541 |
+
audio_data = audio_data.astype(np.float32)
|
| 542 |
+
else:
|
| 543 |
+
audio_data = np.array(audio_data, dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 544 |
|
| 545 |
+
# Ensure mono
|
| 546 |
+
if len(audio_data.shape) > 1:
|
| 547 |
+
audio_data = np.mean(audio_data, axis=1) if audio_data.shape[1] > 1 else audio_data.flatten()
|
| 548 |
|
| 549 |
+
# Normalize if needed
|
| 550 |
+
if np.max(np.abs(audio_data)) > 1.0:
|
| 551 |
+
audio_data = audio_data / np.max(np.abs(audio_data))
|
| 552 |
|
| 553 |
+
# Add to audio processor buffer for speaker detection
|
| 554 |
+
self.audio_processor.add_audio_chunk(audio_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
|
| 556 |
+
# Periodically extract embeddings for speaker detection
|
| 557 |
+
if len(self.audio_processor.audio_buffer) % (SAMPLE_RATE // 2) == 0: # Every 0.5 seconds
|
| 558 |
+
embedding = self.audio_processor.extract_embedding_from_buffer()
|
| 559 |
+
if embedding is not None:
|
| 560 |
+
self.speaker_detector.add_embedding(embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
|
|
|
|
|
|
|
| 562 |
except Exception as e:
|
| 563 |
+
logger.error(f"Error processing audio chunk: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
|
|
|
|
| 565 |
|
| 566 |
+
# FastRTC Audio Handler
|
| 567 |
class DiarizationHandler(AsyncStreamHandler):
|
| 568 |
def __init__(self, diarization_system):
|
| 569 |
super().__init__()
|
| 570 |
self.diarization_system = diarization_system
|
| 571 |
+
self.audio_buffer = []
|
| 572 |
+
self.buffer_size = BUFFER_SIZE
|
|
|
|
|
|
|
| 573 |
|
| 574 |
def copy(self):
|
| 575 |
"""Return a fresh handler for each new stream connection"""
|
| 576 |
return DiarizationHandler(self.diarization_system)
|
| 577 |
|
| 578 |
async def emit(self):
|
| 579 |
+
"""Not used - we only receive audio"""
|
| 580 |
return None
|
| 581 |
|
| 582 |
async def receive(self, frame):
|
| 583 |
+
"""Receive audio data from FastRTC"""
|
| 584 |
try:
|
| 585 |
if not self.diarization_system.is_running:
|
| 586 |
return
|
| 587 |
|
| 588 |
+
# Extract audio data
|
| 589 |
+
audio_data = getattr(frame, 'data', frame)
|
| 590 |
+
|
| 591 |
+
# Convert to numpy array
|
| 592 |
+
if isinstance(audio_data, bytes):
|
| 593 |
+
audio_array = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
|
| 594 |
+
elif isinstance(audio_data, (list, tuple)):
|
| 595 |
+
audio_array = np.array(audio_data, dtype=np.float32)
|
| 596 |
else:
|
| 597 |
+
audio_array = np.array(audio_data, dtype=np.float32)
|
| 598 |
|
| 599 |
+
# Ensure 1D
|
| 600 |
+
if len(audio_array.shape) > 1:
|
| 601 |
+
audio_array = audio_array.flatten()
|
| 602 |
|
| 603 |
+
# Buffer audio chunks
|
| 604 |
+
self.audio_buffer.extend(audio_array)
|
| 605 |
+
|
| 606 |
+
# Process in chunks
|
| 607 |
+
while len(self.audio_buffer) >= self.buffer_size:
|
| 608 |
+
chunk = np.array(self.audio_buffer[:self.buffer_size])
|
| 609 |
+
self.audio_buffer = self.audio_buffer[self.buffer_size:]
|
| 610 |
+
|
| 611 |
+
# Process asynchronously
|
| 612 |
+
await self.process_audio_async(chunk)
|
|
|
|
| 613 |
|
| 614 |
except Exception as e:
|
| 615 |
+
logger.error(f"Error in FastRTC receive: {e}")
|
|
|
|
|
|
|
| 616 |
|
| 617 |
+
async def process_audio_async(self, audio_data):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 618 |
"""Process audio data asynchronously"""
|
| 619 |
try:
|
|
|
|
| 620 |
loop = asyncio.get_event_loop()
|
| 621 |
await loop.run_in_executor(
|
| 622 |
None,
|
| 623 |
self.diarization_system.process_audio_chunk,
|
| 624 |
audio_data,
|
| 625 |
+
SAMPLE_RATE
|
| 626 |
)
|
| 627 |
except Exception as e:
|
| 628 |
+
logger.error(f"Error in async audio processing: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 629 |
|
| 630 |
|
| 631 |
# Global instances
|
| 632 |
+
diarization_system = RealtimeSpeakerDiarization()
|
| 633 |
audio_handler = None
|
| 634 |
|
|
|
|
| 635 |
def initialize_system():
|
| 636 |
"""Initialize the diarization system"""
|
| 637 |
+
global audio_handler
|
| 638 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 639 |
success = diarization_system.initialize_models()
|
| 640 |
if success:
|
| 641 |
audio_handler = DiarizationHandler(diarization_system)
|
| 642 |
+
return "✅ System initialized successfully!"
|
| 643 |
else:
|
| 644 |
+
return "❌ Failed to initialize system. Check logs for details."
|
| 645 |
except Exception as e:
|
| 646 |
+
logger.error(f"Initialization error: {e}")
|
| 647 |
return f"❌ Initialization error: {str(e)}"
|
| 648 |
|
|
|
|
| 649 |
def start_recording():
|
| 650 |
"""Start recording and transcription"""
|
| 651 |
try:
|
|
|
|
|
|
|
| 652 |
result = diarization_system.start_recording()
|
| 653 |
+
return f"🎙️ {result}"
|
| 654 |
except Exception as e:
|
| 655 |
return f"❌ Failed to start recording: {str(e)}"
|
| 656 |
|
|
|
|
| 657 |
def stop_recording():
|
| 658 |
"""Stop recording and transcription"""
|
| 659 |
try:
|
|
|
|
|
|
|
| 660 |
result = diarization_system.stop_recording()
|
| 661 |
return f"⏹️ {result}"
|
| 662 |
except Exception as e:
|
| 663 |
return f"❌ Failed to stop recording: {str(e)}"
|
| 664 |
|
|
|
|
| 665 |
def clear_conversation():
|
| 666 |
"""Clear the conversation"""
|
| 667 |
try:
|
|
|
|
|
|
|
| 668 |
result = diarization_system.clear_conversation()
|
| 669 |
return f"🗑️ {result}"
|
| 670 |
except Exception as e:
|
| 671 |
return f"❌ Failed to clear conversation: {str(e)}"
|
| 672 |
|
|
|
|
| 673 |
def update_settings(threshold, max_speakers):
|
| 674 |
"""Update system settings"""
|
| 675 |
try:
|
|
|
|
|
|
|
| 676 |
result = diarization_system.update_settings(threshold, max_speakers)
|
| 677 |
return f"⚙️ {result}"
|
| 678 |
except Exception as e:
|
| 679 |
return f"❌ Failed to update settings: {str(e)}"
|
| 680 |
|
|
|
|
| 681 |
def get_conversation():
|
| 682 |
"""Get the current conversation"""
|
| 683 |
try:
|
|
|
|
|
|
|
| 684 |
return diarization_system.get_formatted_conversation()
|
| 685 |
except Exception as e:
|
| 686 |
return f"<i>Error getting conversation: {str(e)}</i>"
|
| 687 |
|
|
|
|
| 688 |
def get_status():
|
| 689 |
"""Get system status"""
|
| 690 |
try:
|
|
|
|
|
|
|
| 691 |
return diarization_system.get_status_info()
|
| 692 |
except Exception as e:
|
| 693 |
return f"Error getting status: {str(e)}"
|
| 694 |
|
|
|
|
| 695 |
# Create Gradio interface
|
| 696 |
def create_interface():
|
| 697 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
| 698 |
gr.Markdown("# 🎤 Real-time Speech Recognition with Speaker Diarization")
|
| 699 |
+
gr.Markdown("Live transcription with automatic speaker identification using FastRTC audio streaming.")
|
| 700 |
|
| 701 |
with gr.Row():
|
| 702 |
with gr.Column(scale=2):
|
| 703 |
+
# Conversation display
|
| 704 |
conversation_output = gr.HTML(
|
| 705 |
+
value="<div style='padding: 20px; background: #f8f9fa; border-radius: 10px; min-height: 300px;'><i>Click 'Initialize System' to start...</i></div>",
|
| 706 |
+
label="Live Conversation"
|
|
|
|
| 707 |
)
|
| 708 |
|
| 709 |
# Control buttons
|
| 710 |
with gr.Row():
|
| 711 |
init_btn = gr.Button("🔧 Initialize System", variant="secondary", size="lg")
|
| 712 |
+
start_btn = gr.Button("🎙️ Start", variant="primary", size="lg", interactive=False)
|
| 713 |
+
stop_btn = gr.Button("⏹️ Stop", variant="stop", size="lg", interactive=False)
|
| 714 |
clear_btn = gr.Button("🗑️ Clear", variant="secondary", size="lg", interactive=False)
|
| 715 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 716 |
# Status display
|
| 717 |
status_output = gr.Textbox(
|
| 718 |
label="System Status",
|
| 719 |
+
value="Ready to initialize...",
|
| 720 |
+
lines=8,
|
| 721 |
+
interactive=False
|
|
|
|
| 722 |
)
|
| 723 |
|
| 724 |
with gr.Column(scale=1):
|
| 725 |
+
# Settings
|
| 726 |
gr.Markdown("## ⚙️ Settings")
|
| 727 |
|
| 728 |
threshold_slider = gr.Slider(
|
| 729 |
+
minimum=0.3,
|
| 730 |
+
maximum=0.9,
|
| 731 |
step=0.05,
|
| 732 |
+
value=DEFAULT_CHANGE_THRESHOLD,
|
| 733 |
label="Speaker Change Sensitivity",
|
| 734 |
+
info="Lower = more sensitive"
|
| 735 |
)
|
| 736 |
|
| 737 |
max_speakers_slider = gr.Slider(
|
| 738 |
minimum=2,
|
| 739 |
+
maximum=ABSOLUTE_MAX_SPEAKERS,
|
| 740 |
step=1,
|
| 741 |
+
value=DEFAULT_MAX_SPEAKERS,
|
| 742 |
+
label="Maximum Speakers"
|
| 743 |
)
|
| 744 |
|
| 745 |
+
update_btn = gr.Button("Update Settings", variant="secondary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 746 |
|
| 747 |
# Instructions
|
|
|
|
| 748 |
gr.Markdown("""
|
| 749 |
+
## 📋 Instructions
|
| 750 |
+
1. **Initialize** the system (loads AI models)
|
| 751 |
+
2. **Start** recording
|
| 752 |
+
3. **Speak** - system will transcribe and identify speakers
|
| 753 |
+
4. **Monitor** real-time results below
|
| 754 |
+
|
| 755 |
+
## 🎨 Speaker Colors
|
| 756 |
+
- 🔴 Speaker 1 (Red)
|
| 757 |
+
- 🟢 Speaker 2 (Teal)
|
| 758 |
+
- 🔵 Speaker 3 (Blue)
|
| 759 |
+
- 🟡 Speaker 4 (Green)
|
| 760 |
+
- 🟣 Speaker 5 (Yellow)
|
| 761 |
+
- 🟤 Speaker 6 (Plum)
|
| 762 |
+
- 🟫 Speaker 7 (Mint)
|
| 763 |
+
- 🟨 Speaker 8 (Gold)
|
| 764 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 765 |
|
| 766 |
# Event handlers
|
| 767 |
def on_initialize():
|
| 768 |
+
result = initialize_system()
|
| 769 |
+
if "✅" in result:
|
| 770 |
+
return result, gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
| 771 |
+
else:
|
| 772 |
+
return result, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 773 |
|
| 774 |
def on_start():
|
| 775 |
+
result = start_recording()
|
| 776 |
+
return result, gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 777 |
|
| 778 |
def on_stop():
|
| 779 |
+
result = stop_recording()
|
| 780 |
+
return result, gr.update(interactive=True), gr.update(interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 781 |
|
| 782 |
def on_clear():
|
| 783 |
+
result = clear_conversation()
|
| 784 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 785 |
|
| 786 |
def on_update_settings(threshold, max_speakers):
|
| 787 |
+
result = update_settings(threshold, int(max_speakers))
|
| 788 |
+
return result
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
+
def update_display():
|
| 791 |
+
"""Continuously update the conversation display"""
|
| 792 |
+
conversation = get_conversation()
|
| 793 |
+
status = get_status()
|
| 794 |
+
return conversation, status
|
| 795 |
+
|
| 796 |
+
# Button event bindings
|
| 797 |
init_btn.click(
|
| 798 |
+
fn=on_initialize,
|
| 799 |
+
inputs=[],
|
| 800 |
+
outputs=[status_output, start_btn, stop_btn, clear_btn]
|
| 801 |
)
|
| 802 |
|
| 803 |
start_btn.click(
|
| 804 |
+
fn=on_start,
|
| 805 |
+
inputs=[],
|
| 806 |
outputs=[status_output, start_btn, stop_btn]
|
| 807 |
)
|
| 808 |
|
| 809 |
stop_btn.click(
|
| 810 |
+
fn=on_stop,
|
| 811 |
+
inputs=[],
|
| 812 |
outputs=[status_output, start_btn, stop_btn]
|
| 813 |
)
|
| 814 |
|
| 815 |
clear_btn.click(
|
| 816 |
+
fn=on_clear,
|
| 817 |
+
inputs=[],
|
| 818 |
+
outputs=[status_output]
|
| 819 |
)
|
| 820 |
|
| 821 |
+
update_btn.click(
|
| 822 |
+
fn=on_update_settings,
|
| 823 |
inputs=[threshold_slider, max_speakers_slider],
|
| 824 |
outputs=[status_output]
|
| 825 |
)
|
| 826 |
|
| 827 |
+
# Auto-refresh conversation display every 500ms
|
| 828 |
+
interface.load(
|
| 829 |
+
fn=update_display,
|
| 830 |
+
inputs=[],
|
| 831 |
+
outputs=[conversation_output, status_output],
|
| 832 |
+
every=0.5
|
| 833 |
)
|
| 834 |
|
| 835 |
return interface
|
| 836 |
|
| 837 |
|
| 838 |
+
# FastAPI integration for FastRTC
|
| 839 |
def create_fastapi_app():
|
| 840 |
+
"""Create FastAPI app with FastRTC integration"""
|
| 841 |
+
app = FastAPI(title="Real-time Speaker Diarization API")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 842 |
|
| 843 |
+
@app.get("/")
|
| 844 |
+
async def root():
|
| 845 |
+
return {"message": "Real-time Speaker Diarization API"}
|
| 846 |
|
| 847 |
+
@app.get("/status")
|
| 848 |
+
async def api_status():
|
| 849 |
+
try:
|
| 850 |
+
if diarization_system.speaker_detector:
|
| 851 |
+
status = diarization_system.speaker_detector.get_status_info()
|
| 852 |
+
return {
|
| 853 |
+
"initialized": True,
|
| 854 |
+
"running": diarization_system.is_running,
|
| 855 |
+
"current_speaker": status["current_speaker"],
|
| 856 |
+
"active_speakers": status["active_speakers"],
|
| 857 |
+
"max_speakers": status["max_speakers"],
|
| 858 |
+
"last_similarity": status["last_similarity"],
|
| 859 |
+
"threshold": status["threshold"]
|
| 860 |
+
}
|
| 861 |
+
else:
|
| 862 |
+
return {"initialized": False, "running": False}
|
| 863 |
+
except Exception as e:
|
| 864 |
+
return {"error": str(e)}
|
| 865 |
|
| 866 |
+
@app.get("/conversation")
|
| 867 |
async def get_conversation_api():
|
|
|
|
| 868 |
try:
|
| 869 |
return {
|
| 870 |
+
"conversation": diarization_system.get_formatted_conversation(),
|
| 871 |
+
"sentences": len(diarization_system.full_sentences)
|
|
|
|
|
|
|
| 872 |
}
|
| 873 |
except Exception as e:
|
| 874 |
+
return {"error": str(e)}
|
| 875 |
|
| 876 |
+
@app.post("/initialize")
|
| 877 |
+
async def initialize_api():
|
|
|
|
| 878 |
try:
|
| 879 |
+
result = initialize_system()
|
| 880 |
+
return {"message": result, "success": "✅" in result}
|
| 881 |
+
except Exception as e:
|
| 882 |
+
return {"error": str(e), "success": False}
|
| 883 |
+
|
| 884 |
+
@app.post("/start")
|
| 885 |
+
async def start_api():
|
| 886 |
+
try:
|
| 887 |
+
result = start_recording()
|
| 888 |
+
return {"message": result, "success": "🎙️" in result}
|
| 889 |
+
except Exception as e:
|
| 890 |
+
return {"error": str(e), "success": False}
|
| 891 |
+
|
| 892 |
+
@app.post("/stop")
|
| 893 |
+
async def stop_api():
|
| 894 |
+
try:
|
| 895 |
+
result = stop_recording()
|
| 896 |
+
return {"message": result, "success": "⏹️" in result}
|
| 897 |
+
except Exception as e:
|
| 898 |
+
return {"error": str(e), "success": False}
|
| 899 |
+
|
| 900 |
+
@app.post("/clear")
|
| 901 |
+
async def clear_api():
|
| 902 |
+
try:
|
| 903 |
+
result = clear_conversation()
|
| 904 |
+
return {"message": result, "success": True}
|
| 905 |
except Exception as e:
|
| 906 |
+
return {"error": str(e), "success": False}
|
| 907 |
+
|
| 908 |
+
# FastRTC stream endpoint
|
| 909 |
+
if audio_handler:
|
| 910 |
+
app.add_websocket_route("/stream", Stream(audio_handler))
|
| 911 |
|
|
|
|
| 912 |
return app
|
| 913 |
|
| 914 |
|
| 915 |
+
# Main execution
|
| 916 |
+
if __name__ == "__main__":
|
| 917 |
+
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 918 |
|
| 919 |
+
parser = argparse.ArgumentParser(description='Real-time Speaker Diarization System')
|
| 920 |
+
parser.add_argument('--mode', choices=['gradio', 'api', 'both'], default='gradio',
|
| 921 |
+
help='Run mode: gradio interface, API only, or both')
|
| 922 |
+
parser.add_argument('--port', type=int, default=7860,
|
| 923 |
+
help='Port to run on (default: 7860)')
|
| 924 |
+
parser.add_argument('--host', type=str, default='0.0.0.0',
|
| 925 |
+
help='Host to bind to (default: 0.0.0.0)')
|
| 926 |
|
| 927 |
+
args = parser.parse_args()
|
|
|
|
| 928 |
|
| 929 |
+
if args.mode == 'gradio':
|
| 930 |
+
# Run Gradio interface only
|
| 931 |
+
interface = create_interface()
|
| 932 |
+
interface.launch(
|
| 933 |
+
server_name=args.host,
|
| 934 |
+
server_port=args.port,
|
| 935 |
+
share=True,
|
| 936 |
+
show_error=True
|
| 937 |
+
)
|
| 938 |
|
| 939 |
+
elif args.mode == 'api':
|
| 940 |
+
# Run FastAPI only
|
| 941 |
+
app = create_fastapi_app()
|
| 942 |
+
uvicorn.run(app, host=args.host, port=args.port)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 943 |
|
| 944 |
+
elif args.mode == 'both':
|
| 945 |
+
# Run both Gradio and FastAPI
|
| 946 |
+
import threading
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 947 |
|
| 948 |
+
# Start FastAPI in a separate thread
|
| 949 |
+
app = create_fastapi_app()
|
| 950 |
+
api_thread = threading.Thread(
|
| 951 |
+
target=lambda: uvicorn.run(app, host=args.host, port=args.port + 1),
|
| 952 |
+
daemon=True
|
| 953 |
+
)
|
| 954 |
+
api_thread.start()
|
| 955 |
|
| 956 |
+
# Start Gradio interface
|
| 957 |
+
interface = create_interface()
|
| 958 |
interface.launch(
|
| 959 |
+
server_name=args.host,
|
| 960 |
+
server_port=args.port,
|
| 961 |
share=True,
|
| 962 |
+
show_error=True
|
|
|
|
| 963 |
)
|
| 964 |
+
|
| 965 |
+
|
| 966 |
+
# Additional utility functions for Hugging Face Spaces
|
| 967 |
+
def setup_for_huggingface():
|
| 968 |
+
"""Setup function specifically for Hugging Face Spaces"""
|
| 969 |
+
# Auto-initialize when running on HF Spaces
|
| 970 |
+
try:
|
| 971 |
+
if os.environ.get('SPACE_ID'): # Running on HF Spaces
|
| 972 |
+
logger.info("Running on Hugging Face Spaces - Auto-initializing...")
|
| 973 |
+
initialize_system()
|
| 974 |
+
logger.info("System ready for Hugging Face Spaces!")
|
| 975 |
except Exception as e:
|
| 976 |
+
logger.error(f"HF Spaces setup error: {e}")
|
| 977 |
+
|
| 978 |
+
# Call setup for HF Spaces
|
| 979 |
+
setup_for_huggingface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 980 |
|
| 981 |
+
# For Hugging Face Spaces, create and launch interface directly
|
| 982 |
+
interface = create_interface()
|
| 983 |
|
| 984 |
+
# Export the interface for HF Spaces
|
| 985 |
+
demo = interface
|
|
|
|
|
|
|
|
|
|
|
|