# -------------------------------------------------------- # MTLoRA # GitHub: https://github.com/scale-lab/MTLoRA # Built upon Microsoft LoRA (https://github.com/microsoft/LoRA) # # Original file: # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License # # Adapted file: # Copyright (c) 2024 SCALE Lab, Brown University # Licensed under the MIT License (see LICENSE for details) # -------------------------------------------------------- r""" Low Ranking Adaptation for LLMs scheme. ┌───────────────────┐ ┆ h ┆ └───────────────────┘ ▲ | + / \ ┌─────────────────┐ ╭───────────────╮ Matrix initialization: ┆ ┆ \ B / B = 0 ┆ pretrained ┆ \ r*d / A = N(0, sigma^2) ┆ weights ┆ ╰─────────╯ ┆ ┆ | r | r - rank ┆ W e R^(d*d) ┆ | ◀─────▶ | ┆ ┆ ╭─────────╮ └─────────────────┘ / A \ ▲ / d*r \ \ ╰───────────────╯ \ ▲ \ / \ / ┌───────────────────┐ ┆ x ┆ └───────────────────┘ With LoRA (Low Ranking Adaptation: https://arxiv.org/abs/2106.09685) instead of learning weights of size d*d, we can freeze the pretrained weights and instead learn two matrices of size d*r and r*d (they will store weight updates for the pretrained weights): the number of parameters in this case will be reduced drastically (depending on the rank of course) yet after multiplication of matrices d*r and r*d we will get a matrix d*d which we can sum with frozen pretrained weights and thus fine-tune the model. The goal of this approach is to move weight updates into a separate matrix which is decomposed with two matrices of a lower rank. """ import math from typing import Any, Dict, Tuple, Union, Mapping import torch import torch.nn as nn from torch.nn import functional as F class LoRALayer(nn.Module): def __init__(self, r: int, lora_alpha: int, lora_dropout: float): """Store LoRA specific attributes in a class. Args: r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2) lora_alpha: alpha is needed for scaling updates as alpha/r "This scaling helps to reduce the need to retune hyperparameters when we vary r" https://arxiv.org/pdf/2106.09685.pdf (section 4.1) lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A) """ super().__init__() assert r >= 0 self.r = r self.lora_alpha = lora_alpha # Optional dropout if lora_dropout > 0.0: self.lora_dropout = nn.Dropout(p=lora_dropout) else: self.lora_dropout = lambda x: x # Mark the weight as unmerged self.merged = False class LoRALinear(LoRALayer): # LoRA implemented in a dense layer def __init__( self, # ↓ this part is for pretrained weights in_features: int, out_features: int, # ↓ the remaining part is for LoRA r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, tasks=None, **kwargs, ): """LoRA wrapper around linear class. This class has three weight matrices: 1. Pretrained weights are stored as `self.linear.weight` 2. LoRA A matrix as `self.lora_A` 3. LoRA B matrix as `self.lora_B` Only LoRA's A and B matrices are updated, pretrained weights stay frozen. Args: in_features: number of input features of the pretrained weights out_features: number of output features of the pretrained weights r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2) lora_alpha: alpha is needed for scaling updates as alpha/r "This scaling helps to reduce the need to retune hyperparameters when we vary r" https://arxiv.org/pdf/2106.09685.pdf (section 4.1) lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A) """ super().__init__(r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout) self.linear = torch.nn.Linear( in_features, out_features, **kwargs) # Actual trainable parameters if r > 0: self.lora_A = nn.Parameter( self.linear.weight.new_zeros((r, in_features))) self.lora_B = nn.Parameter( self.linear.weight.new_zeros((out_features, r))) self.scaling = self.lora_alpha / self.r self.reset_parameters() def reset_parameters(self): """Reset all the weights, even including pretrained ones.""" if hasattr(self, "lora_A"): # initialize A the same way as the default for nn.Linear and B to zero # Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314 nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) nn.init.zeros_(self.lora_B) def merge(self): """Merges the LoRA weights into the full-rank weights (W = W + delta_W).""" if self.r > 0 and not self.merged: # Merge the weights and mark it self.linear.weight.data += (self.lora_B @ self.lora_A) * self.scaling self.merged = True def forward(self, x: torch.Tensor): # if weights are merged or rank is less or equal to zero (LoRA is disabled) - it's only a regular nn.Linear forward pass; # otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights pretrained = self.linear(x) if self.r == 0 or self.merged: return pretrained lora = (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling return pretrained + lora class MTLoRALinear(LoRALayer): # LoRA implemented in a dense layer def __init__( self, # ↓ this part is for pretrained weights in_features: int, out_features: int, # ↓ the remaining part is for LoRA r: Union[int, Mapping[str, int]] = 0, lora_shared_scale: float = 1.0, lora_task_scale: float = 1.0, lora_dropout: float = 0.0, tasks=None, trainable_scale_shared=False, trainable_scale_per_task=False, shared_mode: str = 'matrix', **kwargs, ): assert shared_mode in ['matrix', 'matrixv2', 'add', 'addition', 'lora_only'] if shared_mode == 'add': shared_mode = 'addition' if shared_mode == 'lora_only': tasks = None has_tasks = tasks is not None if not has_tasks: if shared_mode not in ['matrix']: shared_mode = 'matrix' if isinstance(r, int): r = {'shared': r} super().__init__( r=r['shared'], lora_alpha=lora_shared_scale, lora_dropout=lora_dropout) self.linear = torch.nn.Linear( in_features, out_features, **kwargs) self.tasks = tasks self.shared_mode = shared_mode if r['shared'] > 0: if has_tasks: self.lora_tasks_A = nn.ParameterDict({ task: nn.Parameter( self.linear.weight.new_zeros((r[task], in_features))) for task in tasks }) self.lora_tasks_B = nn.ParameterDict({ task: nn.Parameter( self.linear.weight.new_zeros((out_features, r[task]))) for task in tasks }) if trainable_scale_per_task: self.lora_task_scale = nn.ParameterDict({ task: nn.Parameter(torch.FloatTensor( [lora_task_scale])) for task in tasks }) else: self.lora_task_scale = {task: lora_task_scale[task] for task in tasks} if self.shared_mode == 'addition': assert has_tasks self.lora_norm = nn.LayerNorm(out_features) elif self.shared_mode == 'matrix' or self.shared_mode == 'matrixv2': self.lora_shared_A = nn.Parameter( self.linear.weight.new_zeros((r['shared'], in_features))) self.lora_shared_B = nn.Parameter( self.linear.weight.new_zeros((out_features, r['shared']))) else: raise NotImplementedError if trainable_scale_shared: self.lora_shared_scale = nn.Parameter( torch.FloatTensor([lora_shared_scale])) else: self.lora_shared_scale = lora_shared_scale self.reset_parameters() def reset_parameters(self): """Reset all the weights, even including pretrained ones.""" if hasattr(self, "lora_shared_A"): # initialize A the same way as the default for nn.Linear and B to zero # Wondering why 'a' is equal to math.sqrt(5)?: https://github.com/pytorch/pytorch/issues/15314 nn.init.kaiming_uniform_(self.lora_shared_A, a=math.sqrt(5)) nn.init.zeros_(self.lora_shared_B) if hasattr(self, "lora_tasks_A"): for task in self.tasks: nn.init.kaiming_uniform_( self.lora_tasks_A[task], a=math.sqrt(5)) nn.init.zeros_(self.lora_tasks_B[task]) def merge(self): """Merges the LoRA weights into the full-rank weights (W = W + delta_W).""" raise NotImplementedError def forward(self, x: torch.Tensor, x_tasks: Dict[str, torch.Tensor] = None): # TODO: handle merging pretrained = self.linear(x) if self.r == 0: return pretrained, None x = self.lora_dropout(x) if self.shared_mode == 'matrix': lora = (x @ self.lora_shared_A.transpose(0, 1) @ self.lora_shared_B.transpose(0, 1)) * self.lora_shared_scale lora_tasks = { task: pretrained + (x_task_input @ self.lora_tasks_A[task].transpose( 0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task]) # Iterate over the items in the x_tasks dict that was PASSED IN for task, x_task_input in x_tasks.items() } if x_tasks is not None else None elif self.shared_mode == 'matrixv2': lora = (x @ self.lora_shared_A.transpose(0, 1) @ self.lora_shared_B.transpose(0, 1)) * self.lora_shared_scale lora_tasks = { task: pretrained + lora + ((x if x_tasks is None else x_tasks[task]) @ self.lora_tasks_A[task].transpose( 0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task]) for task in self.tasks } if self.tasks is not None else None elif self.shared_mode == 'addition': lora_tasks = { task: pretrained + ((x if x_tasks is None else x_tasks[task]) @ self.lora_tasks_A[task].transpose( 0, 1) @ self.lora_tasks_B[task].transpose(0, 1) * self.lora_task_scale[task]) for task in self.tasks } if self.tasks is not None else None lora = self.lora_norm(torch.sum(torch.stack( list(lora_tasks.values()), dim=0), dim=0)) return pretrained + lora, lora_tasks class MTLoRAQKV(LoRALayer): def __init__( self, # ↓ this part is for pretrained weights in_features: int, out_features: int, # ↓ the remaining part is for LoRA r: Union[int, Mapping[str, int]] = 0, lora_shared_scale: float = 1.0, lora_task_scale: float = 1.0, lora_dropout: float = 0.0, tasks=None, trainable_scale_shared=False, trainable_scale_per_task=False, shared_mode: str = 'matrix', **kwargs, ): if isinstance(r, int): r = {'shared': r} super().__init__(r=r['shared'], lora_alpha=lora_shared_scale, lora_dropout=lora_dropout) self.tasks = tasks self.q = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout, tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs) self.k = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout, tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs) self.v = MTLoRALinear(in_features, out_features, r=r, lora_shared_scale=lora_shared_scale, lora_task_scale=lora_task_scale, lora_dropout=lora_dropout, tasks=tasks, trainable_scale_shared=trainable_scale_shared, trainable_scale_per_task=trainable_scale_per_task, shared_mode=shared_mode, **kwargs) def reset_parameters(self): self.q.reset_parameters() self.k.reset_parameters() self.v.reset_parameters() def merge(self): raise NotImplementedError def forward(self, x: torch.Tensor, x_tasks: Dict[str, torch.Tensor] = None): return (torch.cat([self.q(x, x_tasks)[0], self.k(x, x_tasks)[0], self.v(x, x_tasks)[0]], dim=-1), {task: torch.cat([self.q(x, x_tasks)[1][task], self.k(x, x_tasks)[1][task], self.v(x, x_tasks)[1][task]], dim=-1) for task in self.tasks} if self.tasks is not None else None) class LoRAQKVLinear(LoRALinear): # LoRA implemented in a dense layer def __init__( self, # ↓ this part is for pretrained weights in_features: int, out_features: int, # ↓ the remaining part is for LoRA n_head: int, n_query_groups: int, r: int = 0, lora_alpha: int = 1, lora_dropout: float = 0.0, enable_lora: Union[bool, Tuple[bool, bool, bool]] = False, **kwargs, ): """LoRA wrapper around linear class that is used for calculation of q, k and v matrices. This class has three weight matrices: 1. Pretrained weights are stored as `self.linear.weight` 2. LoRA A matrix as `self.lora_A` 3. LoRA B matrix as `self.lora_B` Only LoRA's A and B matrices are updated, pretrained weights stay frozen. Args: in_features: number of input features of the pretrained weights out_features: number of output features of the pretrained weights n_head: number of attention heads n_query_groups: number of query groups (see diagram in `lit_gpt/config.py`) r: rank of the weight update matrices. To make sense of using LoRA the rank should be smaller than the rank of the weights of the model. The rank can be as low as 1: https://arxiv.org/pdf/2106.09685.pdf (section 7.2) lora_alpha: alpha is needed for scaling updates as alpha/r "This scaling helps to reduce the need to retune hyperparameters when we vary r" https://arxiv.org/pdf/2106.09685.pdf (section 4.1) lora_dropout: dropout that is applied on the input in the LoRA branch (before multiplying by matrix A) enable_lora: MergeLinear class is for attention mechanism where qkv are calculated with a single weight matrix. If we don't want to apply LoRA we can set it as False. For example if we want to apply LoRA only to `query` and `value` but keep `key` without weight updates we should pass `[True, False, True]` """ super(LoRALinear, self).__init__( r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout) self.linear = torch.nn.Linear(in_features, out_features, **kwargs) self.n_head = n_head self.n_query_groups = n_query_groups if isinstance(enable_lora, bool): enable_lora = [enable_lora] * 3 assert len(enable_lora) == 3 self.enable_lora = enable_lora # Actual trainable parameters # To better understand initialization let's imagine that we have such parameters: # ⚬ in_features: 128 (embeddings_size) # ⚬ out_features: 384 (3 * embedding_size) # ⚬ r: 2 # ⚬ enable_lora: [True, False, True] if r > 0 and any(enable_lora): self.lora_A = nn.Parameter(self.linear.weight.new_zeros( (r * sum(enable_lora), in_features))) # (4, 128) enable_q, enable_k, enable_v = enable_lora self.kv_embd_size = self.linear.in_features // ( n_head // n_query_groups) # qkv_shapes will be used to split a tensor with weights correctly qkv_shapes = ( self.linear.in_features * enable_q, self.kv_embd_size * enable_k, self.kv_embd_size * enable_v, ) self.qkv_shapes = [s for s in qkv_shapes if s] self.lora_B = nn.Parameter(self.linear.weight.new_zeros( sum(self.qkv_shapes), r)) # (256, 2)) # Notes about shapes above # - self.lora_A has shape (4, 128): 4 because rank is 2 and LoRA is applied only to two matrices; # 128 is the input size of the x (embedding size). (4, 128) and not (128, 4) because later on in # F.linear function weights are automatically transposed. In addition conv1d requires channels to # be before seq length # - self.lora_B has shape (256, 2): 256 because LoRA is applied only to two matrices, so the output is # 128*2; 2 tells to have two channels per group for group convolution # Scaling: # This balances the pretrained model`s knowledge and the new task-specific adaptation # https://lightning.ai/pages/community/tutorial/lora-llm/ # So, set alpha to 1.0 to fully add LoRA. If the LoRA seems to have too much effect (i.e., overfitted), set # alpha to lower value. If the LoRA seems to have too little effect, set alpha to higher than 1.0. You can # tune these values to your needs. This value can be even slightly greater than 1.0! # https://github.com/cloneofsimo/lora self.scaling = self.lora_alpha / self.r # Compute the indices # Indices are needed to properly pad weight updates with zeros. If we want to fine-tune queries and values, # but not keys, then the weights update should be: # # [[ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,], # [....................................], # [ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,]] # ↑ ↑ ↑ # ________________________________________ # | query | key | value | # ---------------------------------------- self.lora_ind = [] if enable_q: self.lora_ind.extend(range(0, self.linear.in_features)) if enable_k: self.lora_ind.extend( range(self.linear.in_features, self.linear.in_features + self.kv_embd_size)) if enable_v: self.lora_ind.extend( range(self.linear.in_features + self.kv_embd_size, self.linear.out_features)) self.reset_parameters() def zero_pad(self, x: torch.Tensor) -> torch.Tensor: """Properly pad weight updates with zeros. If, based on `self.enable_lora`, we want to fine-tune queries and values, but not keys, then the weights update should be: [[ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,], [....................................], [ΔW,ΔW,ΔW, ..., 0,0,0, ..., ΔW,ΔW,ΔW,]] ↑ ↑ ↑ ________________________________________ | query | key | value | ---------------------------------------- Args: x: tensor with weights update that will be padded with zeros if necessary Returns: A tensor with weight updates and zeros for deselected q, k or v """ # we need to do zero padding only if LoRA is disabled for one of QKV matrices if all(self.enable_lora): return x # Let's image that: # ⚬ input x has shape (64, 64, 256): (batch_size, sequence_length, embeddings_size) # ⚬ embeddings_size: 128 # ⚬ self.linear.out_features: 384 (3 * embeddings_size) # ⚬ enable_lora: [True, False, True] # Then x has embeddings_size of 256 (2 * 128 as enable_lora only for query and value, not keys) and expected # embeddings_size is 384 (self.linear.out_features), so that means that we need to pad from 256 to 384 with zeros, but # only for key updates (this is where self.lora_ind comes in handy) # Note: double transpose (in the beginning and in the end) is basically a guard for two-dimensional tensors # for example when we want to merge/unmerge LoRA weights and pretrained weights x = x.transpose(0, 1) result = x.new_zeros( (*x.shape[:-1], self.linear.out_features)) # (64, 64, 384) result = result.view(-1, self.linear.out_features) # (4096, 384) result = result.index_copy( 1, torch.tensor( self.lora_ind, device=result.device), x.reshape(-1, sum(self.qkv_shapes)) ) # (4096, 256) # (64, 64, 384) return result.view((*x.shape[:-1], self.linear.out_features)).transpose(0, 1) def conv1d(self, input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor: """An extension of the `torch.nn.functional.conv1d` function with a logic specific to grouped queries. If the number of heads is equal to the number of query groups - grouped queries are disabled (see scheme in `lit_gpt/config.py:Config`). In this case the combined QKV matrix consists of equally sized query, key and value parts, which means we can utilize `groups` argument from `conv1d`: with this argument the input and weight matrices will be splitted in equally sized parts and applied separately (like having multiple conv layers side by side). Otherwise QKV matrix consists of unequally sized parts and thus we have to split input and weight matrices manually, apply each part of the weight matrix to the corresponding input's part and concatenate the result. Args: input: input matrix of shape (B, C, T) weight: weight matrix of shape (C_output, rank, 1). "C_output" is defined as a sum of embedding sizes for each enabled LoRA layer (see init method of the class). Returns: A tensor with a shape (B, C_output, T) """ if self.n_head == self.n_query_groups: # (B, C_output, T) return F.conv1d(input, weight, groups=sum(self.enable_lora)) # Notation: # ⚬ N: number of enabled LoRA layers (self.enable_lora) # ⚬ C_output': embeddings size for each LoRA layer (not equal in size) # ⚬ r: rank of all LoRA layers (equal in size) input_splitted = input.chunk( sum(self.enable_lora), dim=1) # N * (B, C // N, T) weight_splitted = weight.split( self.qkv_shapes) # N * (C_output', r, 1) return torch.cat( # (B, C_output', T) [F.conv1d(a, b) for a, b in zip(input_splitted, weight_splitted)], dim=1 ) # (B, C_output, T) def merge(self): """Merges the LoRA weights into the full-rank weights (W = W + delta_W).""" # Let's assume that: # ⚬ self.linear.weight.data: (384, 128) or (3 * embedding_size, embedding_size) # ⚬ self.lora_A.data: (4, 128) # ⚬ self.lora_B.data: (256, 2) if self.r > 0 and any(self.enable_lora) and not self.merged: delta_w = self.conv1d( self.lora_A.data.unsqueeze(0), # (4, 128) -> (1, 4, 128) self.lora_B.data.unsqueeze(-1), # (256, 2) -> (256, 2, 1) ).squeeze( 0 ) # (1, 4, 128) @ (256, 2, 1) -> (1, 256, 128) -> (256, 128) # W = W + delta_W (merge) # (256, 128) after zero_pad (384, 128) self.linear.weight.data += self.zero_pad(delta_w * self.scaling) self.merged = True def forward(self, x: torch.Tensor) -> torch.Tensor: """Do the forward pass. If LoRA's weights are merged with pretrained ones then it's a simple matrix multiplication. If not, then multiply pretrained weights with input, apply LoRA on input and do summation. Args: x: input tensor of shape (batch_size, context_length, embedding_size) Returns: Output tensor of shape (batch_size, context_length, 3 * embedding_size) """ # Let's assume that: # ⚬ x: (64, 64, 128) or (batch_size, context_length, embedding_size) # ⚬ self.linear.weight: (384, 128) or (3 * embedding_size, embedding_size) # ⚬ self.lora_A.data: (4, 128) # ⚬ self.lora_B.data: (256, 2) # if weights are merged or LoRA is disabled (r <= 0 or all `enable_lora` are False) - it's only a regular nn.Linear forward pass; # otherwise in addition do the forward pass with LoRA weights and add it's output to the output from pretrained weights pretrained = self.linear(x) if self.r == 0 or not any(self.enable_lora) or self.merged: return pretrained # (64, 64, 128) @ (4, 128) -> (64, 64, 4) after_A = F.linear(self.lora_dropout(x), self.lora_A) # For F.conv1d: # ⚬ input: input tensor of shape (mini-batch, in_channels, iW) # ⚬ weight: filters of shape (out_channels, in_channels/groups, kW) after_B = self.conv1d( after_A.transpose(-2, -1), # (64, 64, 4) -> (64, 4, 64) self.lora_B.unsqueeze(-1), # (256, 2) -> (256, 2, 1) ).transpose( -2, -1 ) # (64, 4, 64) @ (256, 2, 1) -> (64, 256, 64) -> (64, 64, 256) # (64, 64, 256) after zero_pad (64, 64, 384) lora = self.zero_pad(after_B) * self.scaling return pretrained + lora def mark_only_lora_as_trainable(model: nn.Module, bias: str = "none", freeze_patch_embed: bool = False, freeze_norm: bool = False, free_relative_bias: bool = False, freeze_downsample_reduction=False) -> None: """Freeze all modules except LoRA's and depending on 'bias' value unfreezes bias weights. Args: model: model with LoRA layers bias: ``"none"``: all bias weights will be frozen, ``"lora_only"``: only bias weight for LoRA layers will be unfrozen, ``"all"``: all bias weights will be unfrozen. Raises: NotImplementedError: if `bias` not in ["none", "lora_only", "all"] """ def lora_filter(key): return "lora_" in key def patch_embed_filter( key): return not freeze_patch_embed and "patch_embed" in key def norm_filter(key): return not freeze_norm and "norm" in key def downsample_reduction_filter( key): return not freeze_downsample_reduction and "downsample.reduction" in key def relative_position_bias_filter( key): return not free_relative_bias and "relative_position_bias_table" in key def all_filters(key): return lora_filter(key) or patch_embed_filter(key) or norm_filter(key) or downsample_reduction_filter(key) or relative_position_bias_filter(key) print(f"LoRA bias mode: {bias}") print(f"LoRA Freeze patch_embed: {freeze_patch_embed}") print(f"LoRA Freeze norm: {freeze_norm}") print(f"LoRA Freeze downsample_reduction: {freeze_downsample_reduction}") print(f"LoRA Freeze relative_position_bias: {free_relative_bias}") # freeze all layers except LoRA's for n, p in model.named_parameters(): if not all_filters(n): p.requires_grad = False # depending on the `bias` value unfreeze bias weights if bias == "none": return if bias == "all": for n, p in model.named_parameters(): if "bias" in n: p.requires_grad = True elif bias == "lora_only": for m in model.modules(): if isinstance(m, LoRALayer) and hasattr(m, "bias") and m.bias is not None: m.bias.requires_grad = True else: raise NotImplementedError def lora_filter(key: str, value: Any) -> bool: return "lora_" in key def merge_lora_weights(model) -> None: """Merge LoRA weights into the full-rank weights to speed up inference.""" for module in model.modules(): if isinstance(module, LoRALinear): module.merge() def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str, split_qkv: bool = False) -> Dict: unmatched_keys = [] for checkpoint_name, attribute_name in mapping.items(): full_checkpoint_name = prefix + checkpoint_name if full_checkpoint_name in state_dict: full_attribute_name = prefix + attribute_name weights = state_dict.pop( full_checkpoint_name) last_four = ".".join(full_attribute_name.split(".")[-4:]) if split_qkv and last_four in ["attn.qkv.linear.weight", "attn.qkv.linear.bias"]: w_q, w_k, w_v = torch.chunk(weights, chunks=3) weight_bias = last_four.split(".")[-1] full_attribute_name_without_suffix = ".".join(full_attribute_name.split(".")[ :-2]) state_dict[f"{full_attribute_name_without_suffix}.q.linear.{weight_bias}"] = w_q state_dict[f"{full_attribute_name_without_suffix}.k.linear.{weight_bias}"] = w_k state_dict[f"{full_attribute_name_without_suffix}.v.linear.{weight_bias}"] = w_v else: state_dict[full_attribute_name] = weights else: unmatched_keys.append(checkpoint_name) if len(unmatched_keys) > 0: print( f"WARNING: The following keys from the checkpoint were not mapped: {unmatched_keys}") return state_dict