from math import pi from typing import Literal, Optional, Union import torch from einops import rearrange, repeat from torch import Tensor, broadcast_tensors, einsum, nn from torch.amp import autocast from torch.nn import Module # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # broadcat, as tortoise-tts was using it def broadcat(tensors, dim=-1): broadcasted_tensors = broadcast_tensors(*tensors) return torch.cat(broadcasted_tensors, dim=dim) # rotary embedding helper functions def rotate_half(x): x = rearrange(x, "... (d r) -> ... d r", r=2) x1, x2 = x.unbind(dim=-1) x = torch.stack((-x2, x1), dim=-1) return rearrange(x, "... d r -> ... (d r)") @autocast("cuda", enabled=False) def apply_rotary_emb(freqs, t, start_index=0, scale=1.0, seq_dim=-2): dtype = t.dtype if t.ndim == 3: seq_len = t.shape[seq_dim] freqs = freqs[-seq_len:] rot_dim = freqs.shape[-1] end_index = start_index + rot_dim assert ( rot_dim <= t.shape[-1] ), f"feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}" t_left, t, t_right = ( t[..., :start_index], t[..., start_index:end_index], t[..., end_index:], ) t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) out = torch.cat((t_left, t, t_right), dim=-1) return out.type(dtype) # learned rotation helpers def apply_learned_rotations(rotations, t, start_index=0, freq_ranges=None): if exists(freq_ranges): rotations = einsum("..., f -> ... f", rotations, freq_ranges) rotations = rearrange(rotations, "... r f -> ... (r f)") rotations = repeat(rotations, "... n -> ... (n r)", r=2) return apply_rotary_emb(rotations, t, start_index=start_index) # classes class RotaryEmbedding(Module): def __init__( self, dim, custom_freqs: Optional[Tensor] = None, freqs_for: Union[ Literal["lang"], Literal["pixel"], Literal["constant"] ] = "lang", theta=10000, max_freq=10, num_freqs=1, learned_freq=False, use_xpos=False, xpos_scale_base=512, interpolate_factor=1.0, theta_rescale_factor=1.0, seq_before_head_dim=False, cache_if_possible=True, ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ theta *= theta_rescale_factor ** (dim / (dim - 2)) self.freqs_for = freqs_for if exists(custom_freqs): freqs = custom_freqs elif freqs_for == "lang": freqs = 1.0 / ( theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim) ) elif freqs_for == "pixel": freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi elif freqs_for == "constant": freqs = torch.ones(num_freqs).float() self.cache_if_possible = cache_if_possible self.tmp_store("cached_freqs", None) self.tmp_store("cached_scales", None) self.freqs = nn.Parameter(freqs, requires_grad=learned_freq) self.learned_freq = learned_freq # dummy for device self.tmp_store("dummy", torch.tensor(0)) # default sequence dimension self.seq_before_head_dim = seq_before_head_dim self.default_seq_dim = -3 if seq_before_head_dim else -2 # interpolation factors assert interpolate_factor >= 1.0 self.interpolate_factor = interpolate_factor # xpos self.use_xpos = use_xpos if not use_xpos: self.tmp_store("scale", None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = xpos_scale_base self.tmp_store("scale", scale) # add apply_rotary_emb as static method self.apply_rotary_emb = staticmethod(apply_rotary_emb) @property def device(self): return self.dummy.device def tmp_store(self, key, value): self.register_buffer(key, value, persistent=False) def get_seq_pos(self, seq_len, device, dtype, offset=0): return ( torch.arange(seq_len, device=device, dtype=dtype) + offset ) / self.interpolate_factor def rotate_queries_or_keys(self, t, seq_dim=None, offset=0): seq_dim = default(seq_dim, self.default_seq_dim) assert ( not self.use_xpos ), "you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings" device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim] freqs = self.forward( self.get_seq_pos(seq_len, device=device, dtype=dtype, offset=offset), seq_len=seq_len, offset=offset, ) if seq_dim == -3: freqs = rearrange(freqs, "n d -> n 1 d") return apply_rotary_emb(freqs, t, seq_dim=seq_dim) def rotate_queries_with_cached_keys(self, q, k, seq_dim=None, offset=0): seq_dim = default(seq_dim, self.default_seq_dim) q_len, k_len = q.shape[seq_dim], k.shape[seq_dim] assert q_len <= k_len rotated_q = self.rotate_queries_or_keys( q, seq_dim=seq_dim, offset=k_len - q_len + offset ) rotated_k = self.rotate_queries_or_keys(k, seq_dim=seq_dim, offset=offset) rotated_q = rotated_q.type(q.dtype) rotated_k = rotated_k.type(k.dtype) return rotated_q, rotated_k def rotate_queries_and_keys(self, q, k, seq_dim=None): seq_dim = default(seq_dim, self.default_seq_dim) assert self.use_xpos device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim] seq = self.get_seq_pos(seq_len, dtype=dtype, device=device) freqs = self.forward(seq, seq_len=seq_len) scale = self.get_scale(seq, seq_len=seq_len).to(dtype) if seq_dim == -3: freqs = rearrange(freqs, "n d -> n 1 d") scale = rearrange(scale, "n d -> n 1 d") rotated_q = apply_rotary_emb(freqs, q, scale=scale, seq_dim=seq_dim) rotated_k = apply_rotary_emb(freqs, k, scale=scale**-1, seq_dim=seq_dim) rotated_q = rotated_q.type(q.dtype) rotated_k = rotated_k.type(k.dtype) return rotated_q, rotated_k def get_scale(self, t: Tensor, seq_len: Optional[int] = None, offset=0): assert self.use_xpos should_cache = self.cache_if_possible and exists(seq_len) if ( should_cache and exists(self.cached_scales) and (seq_len + offset) <= self.cached_scales.shape[0] ): return self.cached_scales[offset : (offset + seq_len)] scale = 1.0 if self.use_xpos: power = (t - len(t) // 2) / self.scale_base scale = self.scale ** rearrange(power, "n -> n 1") scale = torch.cat((scale, scale), dim=-1) if should_cache: self.tmp_store("cached_scales", scale) return scale def get_axial_freqs(self, *dims): Colon = slice(None) all_freqs = [] for ind, dim in enumerate(dims): if self.freqs_for == "pixel": pos = torch.linspace(-1, 1, steps=dim, device=self.device) else: pos = torch.arange(dim, device=self.device) freqs = self.forward(pos, seq_len=dim) all_axis = [None] * len(dims) all_axis[ind] = Colon new_axis_slice = (Ellipsis, *all_axis, Colon) all_freqs.append(freqs[new_axis_slice]) all_freqs = broadcast_tensors(*all_freqs) return torch.cat(all_freqs, dim=-1) @autocast("cuda", enabled=False) def forward(self, t: Tensor, seq_len=None, offset=0): should_cache = ( self.cache_if_possible and not self.learned_freq and exists(seq_len) and self.freqs_for != "pixel" ) if ( should_cache and exists(self.cached_freqs) and (offset + seq_len) <= self.cached_freqs.shape[0] ): return self.cached_freqs[offset : (offset + seq_len)].detach() freqs = self.freqs freqs = einsum("..., f -> ... f", t.type(freqs.dtype), freqs) freqs = repeat(freqs, "... n -> ... (n r)", r=2) if should_cache: self.tmp_store("cached_freqs", freqs.detach()) return freqs class Rope2D: """ Helper class to apply RoPE2D as well as interpolate on the fly. """ def __init__(self, dim, use_cls_token=False): self.dim = dim self.use_cls_token = use_cls_token self.grid_size = None self.freq = None def init_tensors(self): self.rope = RotaryEmbedding(self.dim // 2) def update_grid(self, device, grid_h, grid_w): if self.grid_size != (grid_h, grid_w): self.grid_size = (grid_h, grid_w) self.rope = self.rope.to(device) if self.use_cls_token: # +1 to leave space for the cls token to be (0, 0) grid_y_range = torch.arange(grid_h, device=device) + 1 grid_x_range = torch.arange(grid_w, device=device) + 1 else: grid_y_range = torch.arange(grid_h, device=device) grid_x_range = torch.arange(grid_w, device=device) freqs_y = self.rope(grid_y_range)[:, None].expand(grid_h, grid_w, -1) freqs_x = self.rope(grid_x_range)[None, :].expand(grid_h, grid_w, -1) freq = torch.cat([freqs_x, freqs_y], dim=-1).reshape(grid_h * grid_w, -1) if self.use_cls_token: freq = torch.cat( [torch.zeros(1, freq.shape[-1], device=device), freq], dim=0 ) self.freq = freq[None, ...] self.freq = self.freq.to(device) def __call__(self, q, k): # batch, heads, seq, dim = q.shape q = apply_rotary_emb(self.freq[:, None, :, :], q) k = apply_rotary_emb(self.freq[:, None, :, :], k) return q, k