Spaces:
Sleeping
Sleeping
| import os | |
| import cv2 | |
| import gradio as gr | |
| import mediapipe as mp | |
| import numpy as np | |
| from PIL import Image | |
| from gradio_client import Client, handle_file | |
| example_path = os.path.join(os.path.dirname(__file__), 'example') | |
| garm_list = os.listdir(os.path.join(example_path, "cloth")) | |
| garm_list_path = [os.path.join(example_path, "cloth", garm) for garm in garm_list] | |
| human_list = os.listdir(os.path.join(example_path, "human")) | |
| human_list_path = [os.path.join(example_path, "human", human) for human in human_list] | |
| # Initialize MediaPipe Pose | |
| mp_pose = mp.solutions.pose | |
| pose = mp_pose.Pose(static_image_mode=True) | |
| mp_drawing = mp.solutions.drawing_utils | |
| mp_pose_landmark = mp_pose.PoseLandmark | |
| def detect_pose(image): | |
| # Convert to RGB | |
| image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
| # Run pose detection | |
| result = pose.process(image_rgb) | |
| keypoints = {} | |
| if result.pose_landmarks: | |
| # Draw landmarks on image | |
| mp_drawing.draw_landmarks(image, result.pose_landmarks, mp_pose.POSE_CONNECTIONS) | |
| # Get image dimensions | |
| height, width, _ = image.shape | |
| # Extract specific landmarks | |
| landmark_indices = { | |
| 'left_shoulder': mp_pose_landmark.LEFT_SHOULDER, | |
| 'right_shoulder': mp_pose_landmark.RIGHT_SHOULDER, | |
| 'left_hip': mp_pose_landmark.LEFT_HIP, | |
| 'right_hip': mp_pose_landmark.RIGHT_HIP | |
| } | |
| for name, index in landmark_indices.items(): | |
| lm = result.pose_landmarks.landmark[index] | |
| x, y = int(lm.x * width), int(lm.y * height) | |
| keypoints[name] = (x, y) | |
| # Draw a circle + label for debug | |
| cv2.circle(image, (x, y), 5, (0, 255, 0), -1) | |
| cv2.putText(image, name, (x + 5, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) | |
| return image | |
| def align_clothing(body_img, clothing_img): | |
| image_rgb = cv2.cvtColor(body_img, cv2.COLOR_BGR2RGB) | |
| result = pose.process(image_rgb) | |
| output = body_img.copy() | |
| if result.pose_landmarks: | |
| h, w, _ = output.shape | |
| # Extract key points | |
| def get_point(landmark_id): | |
| lm = result.pose_landmarks.landmark[landmark_id] | |
| return int(lm.x * w), int(lm.y * h) | |
| left_shoulder = get_point(mp_pose_landmark.LEFT_SHOULDER) | |
| right_shoulder = get_point(mp_pose_landmark.RIGHT_SHOULDER) | |
| left_hip = get_point(mp_pose_landmark.LEFT_HIP) | |
| right_hip = get_point(mp_pose_landmark.RIGHT_HIP) | |
| # Destination box (torso region) | |
| dst_pts = np.array([ | |
| left_shoulder, | |
| right_shoulder, | |
| right_hip, | |
| left_hip | |
| ], dtype=np.float32) | |
| # Source box (clothing image corners) | |
| src_h, src_w = clothing_img.shape[:2] | |
| src_pts = np.array([ | |
| [0, 0], | |
| [src_w, 0], | |
| [src_w, src_h], | |
| [0, src_h] | |
| ], dtype=np.float32) | |
| # Compute perspective transform and warp | |
| matrix = cv2.getPerspectiveTransform(src_pts, dst_pts) | |
| warped_clothing = cv2.warpPerspective(clothing_img, matrix, (w, h), borderMode=cv2.BORDER_TRANSPARENT) | |
| # Handle transparency | |
| if clothing_img.shape[2] == 4: | |
| alpha = warped_clothing[:, :, 3] / 255.0 | |
| for c in range(3): | |
| output[:, :, c] = (1 - alpha) * output[:, :, c] + alpha * warped_clothing[:, :, c] | |
| else: | |
| output = cv2.addWeighted(output, 0.8, warped_clothing, 0.5, 0) | |
| return output | |
| def process_image(human_img_path, garm_img_path): | |
| client = Client("franciszzj/Leffa") | |
| result = client.predict( | |
| src_image_path=handle_file(human_img_path), | |
| ref_image_path=handle_file(garm_img_path), | |
| ref_acceleration=False, | |
| step=30, | |
| scale=2.5, | |
| seed=42, | |
| vt_model_type="viton_hd", | |
| vt_garment_type="upper_body", | |
| vt_repaint=False, | |
| api_name="/leffa_predict_vt" | |
| ) | |
| print(result) | |
| generated_image_path = result[0] | |
| print("generated_image_path" + generated_image_path) | |
| generated_image = Image.open(generated_image_path) | |
| return generated_image | |
| image_blocks = gr.Blocks().queue() | |
| with image_blocks as demo: | |
| gr.HTML("<center><h1>Virtual Try-On</h1></center>") | |
| gr.HTML("<center><p>Upload an image of a person and an image of a garment ✨</p></center>") | |
| with gr.Row(): | |
| with gr.Column(): | |
| human_img = gr.Image(type="filepath", label='Human', interactive=True) | |
| example = gr.Examples( | |
| inputs=human_img, | |
| examples_per_page=10, | |
| examples=human_list_path | |
| ) | |
| with gr.Column(): | |
| garm_img = gr.Image(label="Garment", type="filepath", interactive=True) | |
| example = gr.Examples( | |
| inputs=garm_img, | |
| examples_per_page=8, | |
| examples=garm_list_path) | |
| with gr.Column(): | |
| image_out = gr.Image(label="Processed image", type="pil") | |
| with gr.Row(): | |
| try_button = gr.Button(value="Try-on", variant='primary') | |
| # Linking the button to the processing function | |
| try_button.click(fn=process_image, inputs=[human_img, garm_img], outputs=image_out) | |
| image_blocks.launch(show_error=True) |