Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
| # Load the model and tokenizer | |
| model = AutoModelForSeq2SeqLM.from_pretrained("vennify/t5-base-grammar-correction") | |
| tokenizer = AutoTokenizer.from_pretrained("vennify/t5-base-grammar-correction") | |
| def correct_text(text, max_length, max_new_tokens, min_length, num_beams, temperature, top_p): | |
| inputs = tokenizer.encode("grammar: " + text, return_tensors="pt") | |
| if max_new_tokens > 0: | |
| outputs = model.generate( | |
| inputs, | |
| max_length=max_length, | |
| max_new_tokens=max_new_tokens, | |
| min_length=min_length, | |
| num_beams=num_beams, | |
| temperature=temperature, | |
| top_p=top_p, | |
| early_stopping=True | |
| ) | |
| else: | |
| outputs = model.generate( | |
| inputs, | |
| max_length=max_length, | |
| min_length=min_length, | |
| num_beams=num_beams, | |
| temperature=temperature, | |
| top_p=top_p, | |
| early_stopping=True | |
| ) | |
| corrected_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return corrected_text | |
| def respond(message, history, max_length, min_length, max_new_tokens, num_beams, temperature, top_p): | |
| response = correct_text(message, max_length, max_new_tokens, min_length, num_beams, temperature, top_p) | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Slider(minimum=1, maximum=256, value=100, step=1, label="Max Length"), | |
| gr.Slider(minimum=1, maximum=256, value=0, step=1, label="Min Length"), | |
| gr.Slider(minimum=0, maximum=256, value=0, step=1, label="Max New Tokens (optional)"), | |
| gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Num Beams"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |