File size: 16,509 Bytes
991a517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import logging
from typing import Any, Dict, Optional, Tuple

import cv2
import numpy as np
from PIL import Image

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)


class InpaintingBlender:
    """
    Handles mask processing, prompt enhancement, and result blending for inpainting.

    This class encapsulates all pre-processing and post-processing operations
    needed for inpainting, separate from the main generation pipeline.

    Attributes:
        min_mask_coverage: Minimum mask coverage threshold
        max_mask_coverage: Maximum mask coverage threshold

    Example:
        >>> blender = InpaintingBlender()
        >>> processed_mask, info = blender.prepare_mask(mask, (512, 512), feather_radius=8)
        >>> enhanced_prompt, negative = blender.enhance_prompt("a flower", image, mask)
        >>> result = blender.blend_result(original, generated, mask)
    """

    def __init__(
        self,
        min_mask_coverage: float = 0.01,
        max_mask_coverage: float = 0.95
    ):
        """
        Initialize the InpaintingBlender.

        Parameters
        ----------
        min_mask_coverage : float
            Minimum mask coverage (default: 1%)
        max_mask_coverage : float
            Maximum mask coverage (default: 95%)
        """
        self.min_mask_coverage = min_mask_coverage
        self.max_mask_coverage = max_mask_coverage
        logger.info("InpaintingBlender initialized")

    def prepare_mask(
        self,
        mask: Image.Image,
        target_size: Tuple[int, int],
        feather_radius: int = 8
    ) -> Tuple[Image.Image, Dict[str, Any]]:
        """
        Prepare and validate mask for inpainting.

        Parameters
        ----------
        mask : PIL.Image
            Input mask (white = inpaint area)
        target_size : tuple
            Target (width, height) to match input image
        feather_radius : int
            Feathering radius in pixels

        Returns
        -------
        tuple
            (processed_mask, validation_info)

        Raises
        ------
        ValueError
            If mask coverage is outside acceptable range
        """
        # Convert to grayscale
        if mask.mode != 'L':
            mask = mask.convert('L')

        # Resize to match target
        if mask.size != target_size:
            mask = mask.resize(target_size, Image.LANCZOS)

        # Convert to array for processing
        mask_array = np.array(mask)

        # Calculate coverage
        total_pixels = mask_array.size
        white_pixels = np.count_nonzero(mask_array > 127)
        coverage = white_pixels / total_pixels

        validation_info = {
            "coverage": coverage,
            "white_pixels": white_pixels,
            "total_pixels": total_pixels,
            "feather_radius": feather_radius,
            "valid": True,
            "warning": ""
        }

        # Validate coverage
        if coverage < self.min_mask_coverage:
            validation_info["valid"] = False
            validation_info["warning"] = (
                f"Mask coverage too low ({coverage:.1%}). "
                f"Please select a larger area to inpaint."
            )
            logger.warning(f"Mask coverage {coverage:.1%} below minimum {self.min_mask_coverage:.1%}")

        elif coverage > self.max_mask_coverage:
            validation_info["valid"] = False
            validation_info["warning"] = (
                f"Mask coverage too high ({coverage:.1%}). "
                f"Consider using background generation instead."
            )
            logger.warning(f"Mask coverage {coverage:.1%} above maximum {self.max_mask_coverage:.1%}")

        # Apply feathering
        if feather_radius > 0:
            mask_array = cv2.GaussianBlur(
                mask_array,
                (feather_radius * 2 + 1, feather_radius * 2 + 1),
                feather_radius / 2
            )
            logger.debug(f"Applied {feather_radius}px feathering to mask")

        processed_mask = Image.fromarray(mask_array, mode='L')

        return processed_mask, validation_info

    def enhance_prompt_for_inpainting(
        self,
        prompt: str,
        image: Image.Image,
        mask: Image.Image
    ) -> Tuple[str, str]:
        """
        Enhance prompt based on non-masked region analysis.

        Analyzes the surrounding context to generate appropriate
        lighting and color descriptors.

        Parameters
        ----------
        prompt : str
            User-provided prompt
        image : PIL.Image
            Original image
        mask : PIL.Image
            Inpainting mask

        Returns
        -------
        tuple
            (enhanced_prompt, negative_prompt)
        """
        logger.info("Enhancing prompt for inpainting context...")

        # Convert to arrays
        img_array = np.array(image.convert('RGB'))
        mask_array = np.array(mask.convert('L'))

        # Analyze non-masked regions
        non_masked = mask_array < 127

        if not np.any(non_masked):
            # No context available
            enhanced_prompt = f"{prompt}, high quality, detailed, photorealistic"
            negative_prompt = self._get_inpainting_negative_prompt()
            return enhanced_prompt, negative_prompt

        # Extract context pixels
        context_pixels = img_array[non_masked]

        # Convert to Lab for analysis
        context_lab = cv2.cvtColor(
            context_pixels.reshape(-1, 1, 3),
            cv2.COLOR_RGB2LAB
        ).reshape(-1, 3)

        # Use robust statistics (median) to avoid outlier influence
        median_l = np.median(context_lab[:, 0])
        median_b = np.median(context_lab[:, 2])

        # Analyze lighting conditions
        lighting_descriptors = []

        if median_l > 170:
            lighting_descriptors.append("bright")
        elif median_l > 130:
            lighting_descriptors.append("well-lit")
        elif median_l > 80:
            lighting_descriptors.append("moderate lighting")
        else:
            lighting_descriptors.append("dim lighting")

        # Analyze color temperature (b channel: blue(-) to yellow(+))
        if median_b > 140:
            lighting_descriptors.append("warm golden tones")
        elif median_b > 120:
            lighting_descriptors.append("warm afternoon light")
        elif median_b < 110:
            lighting_descriptors.append("cool neutral tones")

        # Calculate saturation from context
        hsv = cv2.cvtColor(context_pixels.reshape(-1, 1, 3), cv2.COLOR_RGB2HSV)
        median_saturation = np.median(hsv[:, :, 1])

        if median_saturation > 150:
            lighting_descriptors.append("vibrant colors")
        elif median_saturation < 80:
            lighting_descriptors.append("subtle muted colors")

        # Build enhanced prompt
        lighting_desc = ", ".join(lighting_descriptors) if lighting_descriptors else ""
        quality_suffix = "high quality, detailed, photorealistic, seamless integration"

        if lighting_desc:
            enhanced_prompt = f"{prompt}, {lighting_desc}, {quality_suffix}"
        else:
            enhanced_prompt = f"{prompt}, {quality_suffix}"

        negative_prompt = self._get_inpainting_negative_prompt()

        logger.info(f"Enhanced prompt with context: {lighting_desc}")

        return enhanced_prompt, negative_prompt

    def _get_inpainting_negative_prompt(self) -> str:
        """Get standard negative prompt for inpainting."""
        return (
            "inconsistent lighting, wrong perspective, mismatched colors, "
            "visible seams, blending artifacts, color bleeding, "
            "blurry, low quality, distorted, deformed, "
            "harsh edges, unnatural transition"
        )

    def blend_result(
        self,
        original: Image.Image,
        generated: Image.Image,
        mask: Image.Image
    ) -> Image.Image:
        """
        Blend generated content with original image.

        Uses color matching and linear color space blending for seamless results.

        Parameters
        ----------
        original : PIL.Image
            Original image
        generated : PIL.Image
            Generated inpainted image
        mask : PIL.Image
            Blending mask (white = use generated)

        Returns
        -------
        PIL.Image
            Blended result
        """
        logger.info("Blending inpainting result with color matching...")

        # Ensure same size
        if generated.size != original.size:
            generated = generated.resize(original.size, Image.LANCZOS)
        if mask.size != original.size:
            mask = mask.resize(original.size, Image.LANCZOS)

        # Convert to arrays
        orig_array = np.array(original.convert('RGB')).astype(np.float32)
        gen_array = np.array(generated.convert('RGB')).astype(np.float32)
        mask_array = np.array(mask.convert('L')).astype(np.float32) / 255.0

        # Apply color matching to generated region (use original mask for accurate boundary detection)
        gen_array = self._match_colors_at_boundary(orig_array, gen_array, mask_array)

        # Create blend mask: soften edges ONLY for blending (not for generation)
        # This ensures full generation coverage while smooth blending at edges
        blend_mask = self._create_blend_mask(mask_array)

        # sRGB to linear conversion
        def srgb_to_linear(img: np.ndarray) -> np.ndarray:
            img_norm = img / 255.0
            return np.where(
                img_norm <= 0.04045,
                img_norm / 12.92,
                np.power((img_norm + 0.055) / 1.055, 2.4)
            )

        def linear_to_srgb(img: np.ndarray) -> np.ndarray:
            img_clipped = np.clip(img, 0, 1)
            return np.where(
                img_clipped <= 0.0031308,
                12.92 * img_clipped,
                1.055 * np.power(img_clipped, 1/2.4) - 0.055
            )

        # Convert to linear space
        orig_linear = srgb_to_linear(orig_array)
        gen_linear = srgb_to_linear(gen_array)

        # Alpha blending in linear space using the blend mask (with softened edges)
        alpha = blend_mask[:, :, np.newaxis]
        result_linear = gen_linear * alpha + orig_linear * (1 - alpha)

        # Convert back to sRGB
        result_srgb = linear_to_srgb(result_linear)
        result_array = (result_srgb * 255).astype(np.uint8)

        logger.debug("Blending completed with color matching")

        return Image.fromarray(result_array)

    def _match_colors_at_boundary(
        self,
        original: np.ndarray,
        generated: np.ndarray,
        mask: np.ndarray
    ) -> np.ndarray:
        """
        Match colors of generated content to original at the boundary.

        Uses histogram matching in Lab color space for natural blending.

        Parameters
        ----------
        original : np.ndarray
            Original image array (float32, 0-255)
        generated : np.ndarray
            Generated image array (float32, 0-255)
        mask : np.ndarray
            Mask array (float32, 0-1)

        Returns
        -------
        np.ndarray
            Color-matched generated image
        """
        # Create boundary region mask (dilated mask - eroded mask)
        mask_binary = (mask > 0.5).astype(np.uint8) * 255

        # Create narrow boundary region for sampling original colors
        kernel_size = 25  # Pixels to sample around boundary
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel_size, kernel_size))
        dilated = cv2.dilate(mask_binary, kernel, iterations=1)
        eroded = cv2.erode(mask_binary, kernel, iterations=1)

        # Outer boundary (original side)
        outer_boundary = (dilated > 0) & (mask_binary == 0)
        # Inner boundary (generated side)
        inner_boundary = (mask_binary > 0) & (eroded == 0)

        if not np.any(outer_boundary) or not np.any(inner_boundary):
            logger.debug("No boundary region found, skipping color matching")
            return generated

        # Convert to Lab color space
        orig_lab = cv2.cvtColor(original.astype(np.uint8), cv2.COLOR_RGB2LAB).astype(np.float32)
        gen_lab = cv2.cvtColor(generated.astype(np.uint8), cv2.COLOR_RGB2LAB).astype(np.float32)

        # Sample colors from boundary regions
        orig_boundary_pixels = orig_lab[outer_boundary]
        gen_boundary_pixels = gen_lab[inner_boundary]

        if len(orig_boundary_pixels) < 10 or len(gen_boundary_pixels) < 10:
            logger.debug("Not enough boundary pixels, skipping color matching")
            return generated

        # Calculate statistics
        orig_mean = np.mean(orig_boundary_pixels, axis=0)
        orig_std = np.std(orig_boundary_pixels, axis=0) + 1e-6

        gen_mean = np.mean(gen_boundary_pixels, axis=0)
        gen_std = np.std(gen_boundary_pixels, axis=0) + 1e-6

        # Calculate correction factors
        # Only correct L (lightness) and a,b (color) channels
        l_correction = (orig_mean[0] - gen_mean[0]) * 0.7  # 70% correction for lightness
        a_correction = (orig_mean[1] - gen_mean[1]) * 0.5  # 50% correction for color
        b_correction = (orig_mean[2] - gen_mean[2]) * 0.5

        logger.debug(f"Color correction: L={l_correction:.1f}, a={a_correction:.1f}, b={b_correction:.1f}")

        # Apply correction to masked region only
        corrected_lab = gen_lab.copy()
        mask_region = mask > 0.3  # Apply to most of masked region

        corrected_lab[mask_region, 0] = np.clip(
            corrected_lab[mask_region, 0] + l_correction, 0, 255
        )
        corrected_lab[mask_region, 1] = np.clip(
            corrected_lab[mask_region, 1] + a_correction, 0, 255
        )
        corrected_lab[mask_region, 2] = np.clip(
            corrected_lab[mask_region, 2] + b_correction, 0, 255
        )

        # Convert back to RGB
        corrected_rgb = cv2.cvtColor(
            corrected_lab.astype(np.uint8),
            cv2.COLOR_LAB2RGB
        ).astype(np.float32)

        logger.info("Applied boundary color matching")

        return corrected_rgb

    def _create_blend_mask(self, mask: np.ndarray) -> np.ndarray:
        """
        Create a blend mask with softened edges for natural compositing.

        The mask interior stays fully opaque (1.0) while only the edges
        get a smooth transition. This preserves full generated content
        while blending naturally at boundaries.

        Parameters
        ----------
        mask : np.ndarray
            Original mask array (float32, 0-1)

        Returns
        -------
        np.ndarray
            Blend mask with soft edges but solid interior
        """
        # Convert to uint8 for morphological operations
        mask_uint8 = (mask * 255).astype(np.uint8)

        # Create eroded version (solid interior)
        kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))
        eroded = cv2.erode(mask_uint8, kernel, iterations=1)

        # Create smooth transition zone at edges only
        # Blur the original mask for edge softness
        blurred = cv2.GaussianBlur(mask_uint8, (15, 15), 4)

        # Combine: use eroded (solid) for interior, blurred for edges
        # Where eroded > 0, use full opacity; elsewhere use blurred transition
        result = np.where(eroded > 128, mask_uint8, blurred)

        # Final light smoothing
        result = cv2.GaussianBlur(result, (5, 5), 1)

        # Convert back to float
        blend_mask = result.astype(np.float32) / 255.0

        logger.debug("Created blend mask with soft edges and solid interior")

        return blend_mask

    def validate_inputs(
        self,
        image: Image.Image,
        mask: Image.Image
    ) -> Tuple[bool, str]:
        """
        Validate image and mask inputs before processing.

        Parameters
        ----------
        image : PIL.Image
            Input image
        mask : PIL.Image
            Input mask

        Returns
        -------
        tuple
            (is_valid, error_message)
        """
        if image is None:
            return False, "No image provided"

        if mask is None:
            return False, "No mask provided"

        # Check sizes match
        if image.size != mask.size:
            # Will be resized later, so just log a warning
            logger.warning(f"Image size {image.size} != mask size {mask.size}, will resize")

        return True, ""