Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,55 +1,73 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
|
| 7 |
-
print(f"[{time.time()}] SCRIPT START:
|
| 8 |
|
| 9 |
# --- Configuration ---
|
| 10 |
-
MODEL_NAME = "
|
| 11 |
-
# For slightly larger, try "gpt2" (the smallest version of GPT-2)
|
| 12 |
-
# MODEL_NAME = "gpt2"
|
| 13 |
|
| 14 |
-
# Determine device: use CUDA if available, otherwise CPU.
|
| 15 |
-
# For small models on typical HF Spaces, CPU is often the only option or more stable.
|
| 16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
print(f"[{time.time()}] Using device: {DEVICE}")
|
|
|
|
| 18 |
|
| 19 |
# --- Load Model and Tokenizer ---
|
| 20 |
-
# This section can take some time and memory, especially on first run (downloading model)
|
| 21 |
model = None
|
| 22 |
tokenizer = None
|
| 23 |
model_load_error = None
|
| 24 |
|
| 25 |
try:
|
| 26 |
print(f"[{time.time()}] Loading tokenizer for {MODEL_NAME}...")
|
| 27 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 28 |
print(f"[{time.time()}] Tokenizer loaded. Vocab size: {tokenizer.vocab_size if tokenizer else 'N/A'}")
|
| 29 |
|
| 30 |
-
# Add a padding token if it doesn't exist (common for GPT-2 models)
|
| 31 |
if tokenizer and tokenizer.pad_token is None:
|
| 32 |
tokenizer.pad_token = tokenizer.eos_token
|
| 33 |
print(f"[{time.time()}] Set pad_token to eos_token: {tokenizer.pad_token}")
|
| 34 |
|
| 35 |
-
print(f"[{time.time()}]
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
except Exception as e:
|
| 42 |
model_load_error = str(e)
|
| 43 |
print(f"[{time.time()}] CRITICAL ERROR loading model or tokenizer: {e}")
|
| 44 |
-
|
|
|
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
def generate_chat_response(message, history):
|
| 48 |
-
"""
|
| 49 |
-
Generates a response from the local LLM.
|
| 50 |
-
'message' is the user's new input.
|
| 51 |
-
'history' is a list of previous [user, bot] pairs.
|
| 52 |
-
"""
|
| 53 |
print(f"[{time.time()}] generate_chat_response called. Message: '{message}'")
|
| 54 |
|
| 55 |
if model_load_error or not model or not tokenizer:
|
|
@@ -57,99 +75,76 @@ def generate_chat_response(message, history):
|
|
| 57 |
print(f"[{time.time()}] {error_msg}")
|
| 58 |
return error_msg
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
for user_msg, bot_msg in history[-2:]:
|
| 66 |
-
prompt += f"User: {user_msg}\nBot: {bot_msg}\n"
|
| 67 |
-
prompt += f"User: {message}\nBot:"
|
| 68 |
|
| 69 |
try:
|
| 70 |
-
print(f"[{time.time()}] Encoding prompt for model...")
|
| 71 |
-
|
| 72 |
-
# tokenizer.padding_side = "left" # Important for decoder-only models if batching
|
| 73 |
|
| 74 |
-
inputs =
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
truncation=True,
|
| 79 |
-
max_length=512 # Max input length for the model (distilgpt2 is 1024, but keep it reasonable)
|
| 80 |
-
).to(DEVICE)
|
| 81 |
-
|
| 82 |
-
input_ids = inputs["input_ids"]
|
| 83 |
-
attention_mask = inputs["attention_mask"]
|
| 84 |
|
| 85 |
-
print(f"[{time.time()}] Generating response... Input
|
| 86 |
|
| 87 |
-
|
| 88 |
-
# `max_length` here is the total length of input + output
|
| 89 |
-
# `max_new_tokens` is usually preferred for controlling output length specifically
|
| 90 |
-
with torch.no_grad(): # Disable gradient calculations for inference
|
| 91 |
output_sequences = model.generate(
|
| 92 |
-
input_ids=input_ids,
|
| 93 |
-
attention_mask=attention_mask,
|
| 94 |
-
max_new_tokens=
|
| 95 |
-
|
| 96 |
-
pad_token_id=tokenizer.pad_token_id, # Use the pad token ID from tokenizer
|
| 97 |
eos_token_id=tokenizer.eos_token_id,
|
| 98 |
-
do_sample=True,
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
temperature=0.
|
| 102 |
)
|
| 103 |
|
| 104 |
-
|
| 105 |
-
response_text =
|
| 106 |
-
|
| 107 |
-
# Basic post-processing: remove potential artifacts or incomplete sentences if needed
|
| 108 |
-
response_text = response_text.strip()
|
| 109 |
|
| 110 |
print(f"[{time.time()}] Raw generated text: '{response_text}'")
|
| 111 |
if not response_text:
|
| 112 |
response_text = "I'm not sure how to respond to that right now."
|
| 113 |
-
|
| 114 |
return response_text
|
| 115 |
-
|
| 116 |
except Exception as e:
|
| 117 |
print(f"[{time.time()}] Error during text generation: {e}")
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
# --- Gradio Interface ---
|
| 121 |
if __name__ == "__main__":
|
| 122 |
-
print(f"[{time.time()}] MAIN: Building Gradio interface (
|
| 123 |
-
|
| 124 |
-
interface_title = f"Chat with Small Local LLM ({MODEL_NAME})"
|
| 125 |
interface_description = f"""
|
| 126 |
-
This app runs
|
| 127 |
-
|
|
|
|
| 128 |
"""
|
| 129 |
if model_load_error:
|
| 130 |
interface_description += f"\n\n<h3 style='color:red;'>MODEL LOADING FAILED: {model_load_error}</h3>"
|
| 131 |
elif not model or not tokenizer:
|
| 132 |
interface_description += "\n\n<h3 style='color:orange;'>Warning: Model or tokenizer not available. Chat may not function.</h3>"
|
| 133 |
|
| 134 |
-
|
| 135 |
chat_interface = gr.ChatInterface(
|
| 136 |
fn=generate_chat_response,
|
| 137 |
title=interface_title,
|
| 138 |
description=interface_description,
|
| 139 |
-
examples=[["Hello,
|
| 140 |
-
cache_examples=False,
|
| 141 |
-
retry_btn="Retry",
|
| 142 |
-
undo_btn="Delete last",
|
| 143 |
-
clear_btn="Clear chat",
|
| 144 |
)
|
| 145 |
-
|
| 146 |
print(f"[{time.time()}] MAIN: Attempting to launch Gradio app...")
|
| 147 |
try:
|
| 148 |
-
chat_interface.queue().launch(debug=True)
|
| 149 |
print(f"[{time.time()}] MAIN: Gradio app launch() called. Monitor logs for 'Application startup complete'.")
|
| 150 |
except Exception as e:
|
| 151 |
print(f"[{time.time()}] FATAL ERROR during launch: {e}")
|
| 152 |
-
with open("launch_error.txt", "w") as f_err:
|
| 153 |
-
f_err.write(f"Error during
|
| 154 |
-
|
| 155 |
-
print(f"[{time.time()}] SCRIPT END: Small Local LLM Chat app.py has finished initial setup.")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 4 |
import os
|
| 5 |
import time
|
| 6 |
|
| 7 |
+
print(f"[{time.time()}] SCRIPT START: DeepSeek Coder 1.3B Chat (Conditional Quantization). PID: {os.getpid()}")
|
| 8 |
|
| 9 |
# --- Configuration ---
|
| 10 |
+
MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
|
|
|
|
|
|
| 11 |
|
|
|
|
|
|
|
| 12 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
print(f"[{time.time()}] Using device: {DEVICE}")
|
| 14 |
+
print(f"[{time.time()}] PyTorch version: {torch.__version__}")
|
| 15 |
|
| 16 |
# --- Load Model and Tokenizer ---
|
|
|
|
| 17 |
model = None
|
| 18 |
tokenizer = None
|
| 19 |
model_load_error = None
|
| 20 |
|
| 21 |
try:
|
| 22 |
print(f"[{time.time()}] Loading tokenizer for {MODEL_NAME}...")
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 24 |
print(f"[{time.time()}] Tokenizer loaded. Vocab size: {tokenizer.vocab_size if tokenizer else 'N/A'}")
|
| 25 |
|
|
|
|
| 26 |
if tokenizer and tokenizer.pad_token is None:
|
| 27 |
tokenizer.pad_token = tokenizer.eos_token
|
| 28 |
print(f"[{time.time()}] Set pad_token to eos_token: {tokenizer.pad_token}")
|
| 29 |
|
| 30 |
+
print(f"[{time.time()}] Attempting to load model {MODEL_NAME}...")
|
| 31 |
+
|
| 32 |
+
if DEVICE == "cuda":
|
| 33 |
+
print(f"[{time.time()}] Configuring 8-bit quantization for GPU...")
|
| 34 |
+
quantization_config = BitsAndBytesConfig(
|
| 35 |
+
load_in_8bit=True,
|
| 36 |
+
bnb_8bit_compute_dtype=torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
| 37 |
+
)
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
+
MODEL_NAME,
|
| 40 |
+
quantization_config=quantization_config,
|
| 41 |
+
device_map="auto", # Let accelerate handle device mapping for GPU
|
| 42 |
+
trust_remote_code=True
|
| 43 |
+
)
|
| 44 |
+
print(f"[{time.time()}] Model {MODEL_NAME} loaded with 8-bit quantization on GPU.")
|
| 45 |
+
else: # CPU
|
| 46 |
+
print(f"[{time.time()}] Loading model {MODEL_NAME} on CPU without bitsandbytes quantization.")
|
| 47 |
+
# When on CPU, load without quantization_config to avoid bitsandbytes issues.
|
| 48 |
+
# This will use more RAM but is more stable if bitsandbytes CPU support is problematic.
|
| 49 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
MODEL_NAME,
|
| 51 |
+
torch_dtype=torch.float32, # Use float32 for CPU for broader compatibility
|
| 52 |
+
trust_remote_code=True,
|
| 53 |
+
low_cpu_mem_usage=True # Helpful for larger models on CPU
|
| 54 |
+
)
|
| 55 |
+
# Explicitly move to CPU if not already (low_cpu_mem_usage might handle parts of this)
|
| 56 |
+
model.to(DEVICE)
|
| 57 |
+
print(f"[{time.time()}] Model {MODEL_NAME} loaded on CPU (FP32 precision).")
|
| 58 |
+
|
| 59 |
+
model.eval()
|
| 60 |
+
# print(f"[{time.time()}] Model footprint: {model.get_memory_footprint()}") # Useful if available
|
| 61 |
|
| 62 |
except Exception as e:
|
| 63 |
model_load_error = str(e)
|
| 64 |
print(f"[{time.time()}] CRITICAL ERROR loading model or tokenizer: {e}")
|
| 65 |
+
import traceback
|
| 66 |
+
traceback.print_exc()
|
| 67 |
|
| 68 |
+
|
| 69 |
+
# --- Chat Function (remains the same as your previous version) ---
|
| 70 |
def generate_chat_response(message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
print(f"[{time.time()}] generate_chat_response called. Message: '{message}'")
|
| 72 |
|
| 73 |
if model_load_error or not model or not tokenizer:
|
|
|
|
| 75 |
print(f"[{time.time()}] {error_msg}")
|
| 76 |
return error_msg
|
| 77 |
|
| 78 |
+
prompt_parts = []
|
| 79 |
+
for user_msg, bot_msg in history:
|
| 80 |
+
prompt_parts.append(f"### Instruction:\n{user_msg}\n### Response:\n{bot_msg}")
|
| 81 |
+
prompt_parts.append(f"### Instruction:\n{message}\n### Response:")
|
| 82 |
+
prompt = "\n".join(prompt_parts)
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
try:
|
| 85 |
+
print(f"[{time.time()}] Encoding prompt for model (length: {len(prompt)} chars)...")
|
| 86 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1500)
|
|
|
|
| 87 |
|
| 88 |
+
# Move inputs to the model's device if not using device_map="auto" or if it's explicitly CPU
|
| 89 |
+
if DEVICE == "cpu": # Or check model.device directly
|
| 90 |
+
inputs = inputs.to(model.device)
|
| 91 |
+
# If device_map="auto" was used (GPU case), inputs are often handled by accelerate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
print(f"[{time.time()}] Generating response... Input token length: {inputs['input_ids'].shape[1]}")
|
| 94 |
|
| 95 |
+
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
| 96 |
output_sequences = model.generate(
|
| 97 |
+
input_ids=inputs['input_ids'],
|
| 98 |
+
attention_mask=inputs['attention_mask'],
|
| 99 |
+
max_new_tokens=200,
|
| 100 |
+
pad_token_id=tokenizer.eos_token_id,
|
|
|
|
| 101 |
eos_token_id=tokenizer.eos_token_id,
|
| 102 |
+
do_sample=True,
|
| 103 |
+
top_p=0.95,
|
| 104 |
+
top_k=50,
|
| 105 |
+
temperature=0.7
|
| 106 |
)
|
| 107 |
|
| 108 |
+
response_text = tokenizer.decode(output_sequences[0][inputs['input_ids'].shape[-1]:], skip_special_tokens=True)
|
| 109 |
+
response_text = response_text.strip()
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
print(f"[{time.time()}] Raw generated text: '{response_text}'")
|
| 112 |
if not response_text:
|
| 113 |
response_text = "I'm not sure how to respond to that right now."
|
|
|
|
| 114 |
return response_text
|
|
|
|
| 115 |
except Exception as e:
|
| 116 |
print(f"[{time.time()}] Error during text generation: {e}")
|
| 117 |
+
import traceback
|
| 118 |
+
traceback.print_exc()
|
| 119 |
+
return f"Sorry, I encountered an error while generating a response: {e}"
|
| 120 |
|
| 121 |
+
# --- Gradio Interface (remains the same) ---
|
| 122 |
if __name__ == "__main__":
|
| 123 |
+
print(f"[{time.time()}] MAIN: Building Gradio interface (DeepSeek Coder - Conditional Quantization)...")
|
| 124 |
+
interface_title = f"Chat with LLM ({MODEL_NAME} - Conditional Quantization)"
|
|
|
|
| 125 |
interface_description = f"""
|
| 126 |
+
This app runs **{MODEL_NAME}** directly in this Space.
|
| 127 |
+
Model loading might take a few minutes. Running on: **{DEVICE.upper()}**.
|
| 128 |
+
Quantization is attempted on GPU, bypassed on CPU to avoid `bitsandbytes` issues.
|
| 129 |
"""
|
| 130 |
if model_load_error:
|
| 131 |
interface_description += f"\n\n<h3 style='color:red;'>MODEL LOADING FAILED: {model_load_error}</h3>"
|
| 132 |
elif not model or not tokenizer:
|
| 133 |
interface_description += "\n\n<h3 style='color:orange;'>Warning: Model or tokenizer not available. Chat may not function.</h3>"
|
| 134 |
|
|
|
|
| 135 |
chat_interface = gr.ChatInterface(
|
| 136 |
fn=generate_chat_response,
|
| 137 |
title=interface_title,
|
| 138 |
description=interface_description,
|
| 139 |
+
examples=[["Hello, what can you do?"], ["Write a python function to calculate factorial."]],
|
| 140 |
+
cache_examples=False,
|
|
|
|
|
|
|
|
|
|
| 141 |
)
|
|
|
|
| 142 |
print(f"[{time.time()}] MAIN: Attempting to launch Gradio app...")
|
| 143 |
try:
|
| 144 |
+
chat_interface.queue().launch(debug=True)
|
| 145 |
print(f"[{time.time()}] MAIN: Gradio app launch() called. Monitor logs for 'Application startup complete'.")
|
| 146 |
except Exception as e:
|
| 147 |
print(f"[{time.time()}] FATAL ERROR during launch: {e}")
|
| 148 |
+
with open("launch_error.txt", "w") as f_err:
|
| 149 |
+
f_err.write(f"Error during launch: {str(e)}\n")
|
| 150 |
+
print(f"[{time.time()}] SCRIPT END: DeepSeek Coder app.py (Conditional Quantization) has finished.")
|
|
|