Spaces:
Paused
Paused
Commit
·
a50b44f
1
Parent(s):
088a973
app.py
Browse files
app.py
CHANGED
|
@@ -72,94 +72,99 @@ pipe = pipe.to(device)
|
|
| 72 |
|
| 73 |
|
| 74 |
|
| 75 |
-
|
| 76 |
-
def
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
css = """
|
| 117 |
-
#intro{
|
| 118 |
-
# max-width: 32rem;
|
| 119 |
-
# text-align: center;
|
| 120 |
-
# margin: 0 auto;
|
| 121 |
-
}
|
| 122 |
-
"""
|
| 123 |
-
|
| 124 |
-
with gr.Blocks(css=css) as demo:
|
| 125 |
-
with gr.Row() as block:
|
| 126 |
-
with gr.Column():
|
| 127 |
-
# 画像アップロード用の行
|
| 128 |
-
with gr.Row():
|
| 129 |
-
with gr.Column():
|
| 130 |
-
input_image_path = gr.Image(label="入力画像", type='filepath')
|
| 131 |
-
|
| 132 |
-
# プロンプト入力用の行
|
| 133 |
-
with gr.Row():
|
| 134 |
-
prompt_analysis = PromptAnalysis(tagger_dir)
|
| 135 |
-
[prompt, nega] = prompt_analysis.layout(input_image_path)
|
| 136 |
-
# 画像の詳細設定用のスライダー行
|
| 137 |
-
with gr.Row():
|
| 138 |
-
controlnet_conditioning_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, interactive=True, label="線画忠実度")
|
| 139 |
-
|
| 140 |
-
# 画像生成ボタンの行
|
| 141 |
-
with gr.Row():
|
| 142 |
-
generate_button = gr.Button("生成", interactive=False)
|
| 143 |
-
|
| 144 |
-
with gr.Column():
|
| 145 |
-
output_image = gr.Image(type="pil", label="Output Image")
|
| 146 |
-
|
| 147 |
-
# インプットとアウトプットの設定
|
| 148 |
-
inputs = [
|
| 149 |
-
input_image_path,
|
| 150 |
-
prompt,
|
| 151 |
-
nega,
|
| 152 |
-
controlnet_conditioning_scale,
|
| 153 |
-
]
|
| 154 |
-
outputs = [output_image]
|
| 155 |
-
|
| 156 |
-
# ボタンのクリックイベントを設定
|
| 157 |
-
generate_button.click(
|
| 158 |
-
fn=predict,
|
| 159 |
-
inputs=[input_image_path, prompt, nega, controlnet_conditioning_scale],
|
| 160 |
-
outputs=[output_image]
|
| 161 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
|
| 75 |
+
class Img2Img:
|
| 76 |
+
def __init__(self):
|
| 77 |
+
self.input_image_path = None
|
| 78 |
+
|
| 79 |
+
@spaces.GPU
|
| 80 |
+
def predict(
|
| 81 |
+
self,
|
| 82 |
+
input_image_path,
|
| 83 |
+
prompt,
|
| 84 |
+
negative_prompt,
|
| 85 |
+
controlnet_conditioning_scale,
|
| 86 |
+
):
|
| 87 |
+
input_image_pil = Image.open(input_image_path)
|
| 88 |
+
base_size =input_image_pil.size
|
| 89 |
+
resize_image= resize_image_aspect_ratio(input_image_pil)
|
| 90 |
+
resize_image_size = resize_image.size
|
| 91 |
+
width = resize_image_size[0]
|
| 92 |
+
height = resize_image_size[1]
|
| 93 |
+
white_base_pil = base_generation(resize_image.size, (255, 255, 255, 255)).convert("RGB")
|
| 94 |
+
conditioning, pooled = compel([prompt, negative_prompt])
|
| 95 |
+
generator = torch.manual_seed(0)
|
| 96 |
+
last_time = time.time()
|
| 97 |
+
|
| 98 |
+
output_image = pipe(
|
| 99 |
+
image=white_base_pil,
|
| 100 |
+
control_image=resize_image,
|
| 101 |
+
strength=1.0,
|
| 102 |
+
prompt_embeds=conditioning[0:1],
|
| 103 |
+
pooled_prompt_embeds=pooled[0:1],
|
| 104 |
+
negative_prompt_embeds=conditioning[1:2],
|
| 105 |
+
negative_pooled_prompt_embeds=pooled[1:2],
|
| 106 |
+
width=width,
|
| 107 |
+
height=height,
|
| 108 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
| 109 |
+
controlnet_start=0.0,
|
| 110 |
+
controlnet_end=1.0,
|
| 111 |
+
generator=generator,
|
| 112 |
+
num_inference_steps=30,
|
| 113 |
+
guidance_scale=8.5,
|
| 114 |
+
eta=1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
+
print(f"Time taken: {time.time() - last_time}")
|
| 117 |
+
output_image = output_image.resize(base_size, Image.LANCZOS)
|
| 118 |
+
return output_image
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
css = """
|
| 122 |
+
#intro{
|
| 123 |
+
# max-width: 32rem;
|
| 124 |
+
# text-align: center;
|
| 125 |
+
# margin: 0 auto;
|
| 126 |
+
}
|
| 127 |
+
"""
|
| 128 |
+
def layout(self):
|
| 129 |
+
with gr.Blocks(css=css) as demo:
|
| 130 |
+
with gr.Row() as block:
|
| 131 |
+
with gr.Column():
|
| 132 |
+
# 画像アップロード用の行
|
| 133 |
+
with gr.Row():
|
| 134 |
+
with gr.Column():
|
| 135 |
+
self.input_image_path = gr.Image(label="入���画像", type='filepath')
|
| 136 |
+
|
| 137 |
+
# プロンプト入力用の行
|
| 138 |
+
with gr.Row():
|
| 139 |
+
prompt_analysis = PromptAnalysis(tagger_dir)
|
| 140 |
+
[prompt, nega] = prompt_analysis.layout(self.input_image_path)
|
| 141 |
+
# 画像の詳細設定用のスライダー行
|
| 142 |
+
with gr.Row():
|
| 143 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.5, maximum=1.25, value=1.0, step=0.01, interactive=True, label="線画忠実度")
|
| 144 |
+
|
| 145 |
+
# 画像生成ボタンの行
|
| 146 |
+
with gr.Row():
|
| 147 |
+
generate_button = gr.Button("生成", interactive=False)
|
| 148 |
|
| 149 |
+
with gr.Column():
|
| 150 |
+
output_image = gr.Image(type="pil", label="Output Image")
|
| 151 |
+
|
| 152 |
+
# インプットとアウトプットの設定
|
| 153 |
+
inputs = [
|
| 154 |
+
input_image_path,
|
| 155 |
+
prompt,
|
| 156 |
+
nega,
|
| 157 |
+
controlnet_conditioning_scale,
|
| 158 |
+
]
|
| 159 |
+
outputs = [output_image]
|
| 160 |
+
|
| 161 |
+
# ボタンのクリックイベントを設定
|
| 162 |
+
generate_button.click(
|
| 163 |
+
fn=self.predict,
|
| 164 |
+
inputs=[self.input_image_path, prompt, nega, controlnet_conditioning_scale],
|
| 165 |
+
outputs=[output_image]
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
# デモの設定と起動
|
| 169 |
+
demo.queue(api_open=True)
|
| 170 |
+
demo.launch(show_api=True)
|