File size: 9,867 Bytes
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# pylint: disable=missing-docstring
"""Tests for the CRC-PRO colorectal cancer risk model.

Web calculator available at: https://riskcalc.org/ColorectalCancer/
"""

import pytest

from sentinel.risk_models import CRCProRiskModel
from sentinel.user_input import (
    AlcoholConsumption,
    Anthropometrics,
    AspirinUse,
    CancerType,
    Demographics,
    Ethnicity,
    FamilyMemberCancer,
    FamilyRelation,
    FamilySide,
    FemaleSpecific,
    HormoneUse,
    HormoneUseHistory,
    Lifestyle,
    NSAIDUse,
    PersonalMedicalHistory,
    RelationshipDegree,
    Sex,
    SmokingHistory,
    SmokingStatus,
    UserInput,
)

GROUND_TRUTH_CASES = [
    {
        "name": "low_risk",
        "input": UserInput(
            demographics=Demographics(
                age_years=55,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.ASIAN,
                anthropometrics=Anthropometrics(height_cm=152.4, weight_kg=45.4),
                education_level=3,
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
                alcohol_consumption=AlcoholConsumption.MODERATE,
                multivitamin_use=True,
            ),
            personal_medical_history=PersonalMedicalHistory(
                chronic_conditions=[],
                nsaid_use=NSAIDUse.NEVER,
            ),
            family_history=[],
            female_specific=FemaleSpecific(
                hormone_use=HormoneUseHistory(estrogen_use=HormoneUse.NEVER),
            ),
        ),
        "expected": 1.0,
    },
    {
        "name": "medium_risk",
        "input": UserInput(
            demographics=Demographics(
                age_years=65,
                sex=Sex.MALE,
                ethnicity=Ethnicity.PACIFIC_ISLANDER,
                anthropometrics=Anthropometrics(height_cm=177.8, weight_kg=81.6),
                education_level=1,
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
                alcohol_consumption=AlcoholConsumption.HEAVY,
                multivitamin_use=True,
                moderate_physical_activity_hours_per_day=0.0,
                red_meat_consumption_oz_per_day=1.0,
            ),
            personal_medical_history=PersonalMedicalHistory(
                chronic_conditions=[],
                aspirin_use=AspirinUse.NEVER,
            ),
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.FATHER,
                    cancer_type=CancerType.COLORECTAL,
                    age_at_diagnosis=60,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.PATERNAL,
                )
            ],
        ),
        "expected": 3.8,
    },
    {
        "name": "high_risk",
        "input": UserInput(
            demographics=Demographics(
                age_years=75,
                sex=Sex.MALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=177.8, weight_kg=158.8),
                education_level=5,
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.FORMER, pack_years=25.0),
                alcohol_consumption=AlcoholConsumption.HEAVY,
                multivitamin_use=True,
                moderate_physical_activity_hours_per_day=0.0,
                red_meat_consumption_oz_per_day=1.0,
            ),
            personal_medical_history=PersonalMedicalHistory(
                chronic_conditions=[],
                aspirin_use=AspirinUse.NEVER,
            ),
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.MOTHER,
                    cancer_type=CancerType.COLORECTAL,
                    age_at_diagnosis=70,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                )
            ],
        ),
        "expected": 8.9,
    },
]


def _base_user(sex: Sex, **overrides):
    demographics = Demographics(
        age_years=50,
        sex=sex,
        ethnicity=Ethnicity.WHITE,
        anthropometrics=Anthropometrics(height_cm=170.0, weight_kg=75.0),
        education_level=4,
    )
    lifestyle = Lifestyle(
        smoking=SmokingHistory(status=SmokingStatus.FORMER, pack_years=10.0),
        alcohol_consumption=AlcoholConsumption.MODERATE,
        multivitamin_use=True,
    )
    personal_history = PersonalMedicalHistory(chronic_conditions=[])

    if sex == Sex.FEMALE:
        lifestyle.moderate_physical_activity_hours_per_day = None
        lifestyle.red_meat_consumption_oz_per_day = None
        personal_history.aspirin_use = None
        personal_history.nsaid_use = NSAIDUse.NEVER
        female_specific = FemaleSpecific(
            hormone_use=HormoneUseHistory(estrogen_use=HormoneUse.NEVER)
        )
    else:
        lifestyle.moderate_physical_activity_hours_per_day = 1.0
        lifestyle.red_meat_consumption_oz_per_day = 1.5
        personal_history.aspirin_use = AspirinUse.NEVER
        personal_history.nsaid_use = None
        female_specific = None

    family_history = overrides.get("family_history", [])

    return UserInput(
        demographics=demographics,
        lifestyle=lifestyle,
        personal_medical_history=personal_history,
        family_history=family_history,
        female_specific=female_specific,
    )


class TestCRCProRiskModel:
    def setup_method(self):
        self.model = CRCProRiskModel()

    @pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda case: case["name"])
    def test_ground_truth_validation(self, case):
        user = case["input"]
        score = self.model.compute_score(user)
        # scores return a string; ensure numeric and close to expected
        calculated = float(score)
        assert calculated == pytest.approx(case["expected"], abs=0.5)

    def test_metadata(self):
        assert self.model.name == "crc_pro"
        assert self.model.cancer_type() == "colorectal"
        assert "CRC-PRO" in self.model.description()
        assert "%" in self.model.interpretation()
        refs = self.model.references()
        assert isinstance(refs, list) and refs

    def test_validation_errors(self):
        """Test that model raises ValueError for invalid inputs."""
        # Test missing required field
        user_input = UserInput(
            demographics=Demographics(
                age_years=50,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(
                    status=SmokingStatus.NEVER, pack_years=None
                ),  # Missing pack_years
                multivitamin_use=True,
            ),
            personal_medical_history=PersonalMedicalHistory(
                nsaid_use=NSAIDUse.NEVER,
            ),
            family_history=[],
            female_specific=FemaleSpecific(
                hormone_use=HormoneUseHistory(estrogen_use=HormoneUse.NEVER),
            ),
        )

        with pytest.raises(ValueError, match=r"Invalid inputs for CRC-PRO:"):
            self.model.compute_score(user_input)

    def test_inapplicable_sex(self):
        """Test unsupported sex returns N/A."""
        user_input = UserInput(
            demographics=Demographics(
                age_years=50,
                sex=Sex.UNKNOWN,  # Unsupported sex
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=70.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
                multivitamin_use=True,
            ),
            personal_medical_history=PersonalMedicalHistory(),
            family_history=[],
        )

        score = self.model.compute_score(user_input)
        assert "N/A" in score

    def test_age_out_of_range(self):
        """Test age outside validated range raises ValueError."""
        user = _base_user(Sex.MALE)
        user.demographics.age_years = 44  # Below minimum
        with pytest.raises(ValueError, match=r"Invalid inputs for CRC-PRO:"):
            self.model.compute_score(user)

    def test_missing_ethnicity(self):
        """Test missing ethnicity returns N/A."""
        user = _base_user(Sex.MALE)
        user.demographics.ethnicity = None
        result = self.model.compute_score(user)
        assert "Ethnicity" in result

    @pytest.mark.parametrize("sex", [Sex.MALE, Sex.FEMALE])
    def test_valid_score(self, sex):
        """Test that valid inputs produce numeric scores.

        Args:
            sex: Sex enum value to test.
        """
        user = _base_user(sex)
        score = self.model.compute_score(user)
        assert score not in ("N/A: Missing required data:")
        assert float(score) >= 0

    def test_family_history_detection(self):
        """Test that family history increases risk score."""
        user = _base_user(
            Sex.FEMALE,
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.MOTHER,
                    cancer_type=CancerType.COLORECTAL,
                    age_at_diagnosis=60,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                ),
            ],
        )
        score = float(self.model.compute_score(user))

        user_without_family_history = _base_user(Sex.FEMALE)
        score_no_family = float(self.model.compute_score(user_without_family_history))

        assert score > score_no_family