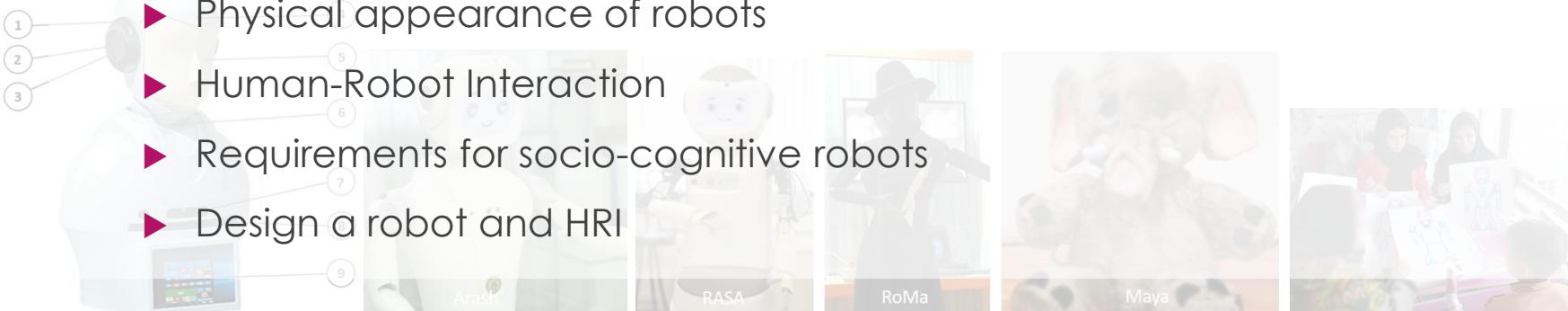


Social and Cognitive Robotics


Chapter 2: Design and interaction of social robots

Alireza Taheri, PhD, Assistant Professor
artaheri@sharif.edu

Head of the Social and Cognitive Robotics Lab.,
Center of Excellence in Design, Robotics, and Automation
School of Mechanical Engineering,
Sharif University of Technology, Tehran, Iran

Outlines

- ▶ Introduction, definitions, and basic concepts
- ▶ **Chapter 2: Design and interaction of social robots**
- ▶ Design and interaction perspective of social robots
 - ▶ How a robot works
 - ▶ Common Approach in Social Robotics
 - ▶ Physical appearance of robots
 - ▶ Human-Robot Interaction
 - ▶ Requirements for socio-cognitive robots
 - ▶ Design a robot and HRI

Cognitive Robots; wrap up

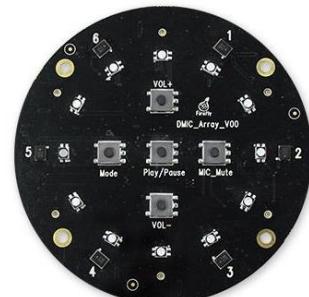
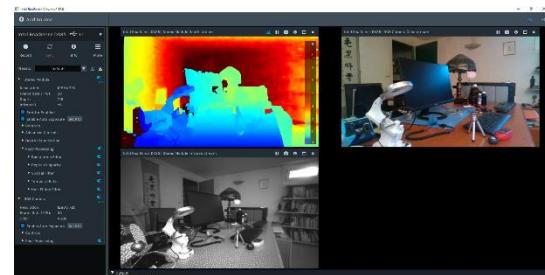
Previously ...

رویای من اینه ...

- ربات های اجتماعی و شناختی، ربات هایی هستند که برای **عمن** ب انسان ها و یا ب **یادیگر** طراحی می شوند و در تعاملات انسانی، تقریباً **مشابه انسان ها عمل می کنند**.
- هدف از طراحی و ساخت ربات های اجتماعی و شناختی و تعامل آن ها با انسان، **ایجاد هم افزایی** در سیستم های **ترکیبی انسان-ربات** است.
 - ▶ It focuses on designing and building robots that have the ability to learn from experience and from others, commit relevant knowledge and skills to memory, retrieve them as the context requires, and flexibly use this knowledge to select appropriate actions for pursuing their goals, while anticipating the outcome of those actions when interacting with the environment.
- قرار نیست تا این ربات ها **جایگزین** انسان ها شوند؛ بلکه آنها با توانایی های خود، قدرت اجتماعی و شناختی انسان ها را افزایش می دهند.
 - ▶ Cognitive robots can use their knowledge to reason about their actions and the context in which they are interacting with the environment, and then by modifying their behavior to improve their overall long-term effectiveness.
- این ربات ها دارای **حافظه** از مشاهدات و تجربیات خود در زمان های مختلف بوده، صریحاً با **یکدیگر تعامل** داشته و از هم **می آموزند**.
 - ▶ In short, cognitive robots are capable of flexible, context-sensitive action, knowing what they are doing and why they are doing it."
- این حوزه تحقیقاتی (**به شدت**) **بین رشته ای** بوده و تخصص های مختلف در آن درگیر می باشند (مهندسین مکانیک، کامپیوتر، برق، روانشناسان، متادانشین علوم شناختی، زیان شناسان، خلاصه و ...).

How a Robot Works

- ▶ For students who have **limited technical background** about intelligent interactive robotics, it is good to start with
 - ▶ the **basic** hardware and software **components** that a robot consists of;
 - ▶ the **techniques** we can apply to make a robot ready for interacting with people.

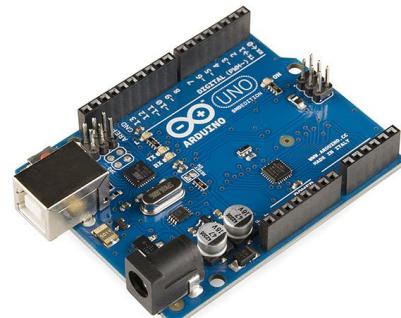



Let's start ...

How a Robot Works (cont.)

a Robot is an Entity that can Sense, Think, and Act.

- ▶ Robots' main elements
 - ▶ Sensors (RGB-D Camera, Microphone, Tactile Sensors, IMU, Position and/or Proximity Sensors, LIDAR, etc.)
 - ▶ Processors and Internal Computers
 - ▶ Actuators (Motors, Speakers, LEDs, Pneumatic actuators, etc.)



How a Robot Works (cont.)

a Robot is an Entity that can Sense, Think, and Act.

► Robots' main elements

- Sensors (RGB-D Camera, Microphone, Tactile Sensors, Position and/or Proximity Sensors, LIDAR, etc.)
- Processors and Internal Computers
- Actuators (Motors, Speakers, LEDs, Pneumatic actuators, etc.)

How a Robot Works (cont.)

a Robot is an Entity that can Sense, Think, and Act.

- ▶ Robots' main elements
 - ▶ Sensors (RGB-D Camera, Microphone, Tactile Sensors, IMU, Position and/or Proximity Sensors, LIDAR, etc.)
 - ▶ Processors and Internal Computers
 - ▶ Actuators (Motors, Speakers, LEDs, Pneumatic actuators, etc.)

How a Robot Works; *Some basic questions*

- ▶ Typical problems that robot engineers have to solve for the robot include the following
 - ▶ What **kind of body** does the robot have? Does it have **wheels**? Does it have **arms**?
 - ▶ How will the robot **know** its **location** in space?
 - ▶ How does the robot **control and position** its body part; for example, arms, legs, wheels?
 - ▶ What does the space around the robot look like? Are there **obstacles**, cliffs, doors? What does the robot need to be able to **perceive about this environment** to move safely?
 - ▶ What are the robot's **goals**? How does it know when it has achieved them?
 - ▶ Are there **people** around? If so, **where are they, and who are they**?
 - ▶ **How** will the robot **know**?
 - ▶ Is a **person** looking at the robot? Is someone talking to it? If so, what does the robot understand from these cues?
 - ▶ What is the human trying to do? What does the person **want the robot to do**? How can we make sure the robot understands this?
 - ▶ What should the robot **do**, and how should the robot **react**?

چند سال پیش، خبری روی فبرگزاری‌ها پدیدار شد مبنی بر این که ژپنی‌ها یک ربات را در مهدکودک ثبت نام کرده‌اند!! به نظر شما یک ربات

اجتماع) و شناخت) تمام عیار، یه ویژگی هایی باید (اشته باشد؟

Common Approach in Social Robotics

رویکرد متدائل در حوزه رباتیک اجتماعی

شناسایی یک نیاز در جامعه (عمدتاً برای کودکان)

انجام مطالعات میدانی و
مداخلات بالینی
در حوزه
بررسی مقبولیت،
آموزش،
توانبخشی و ...

Clinical Interventions

پیاده سازی
الگوریتم های کنترلی و
هوش مصنوعی
جهت توانمندسازی ربات
ها
برای نیل به اهداف تعیین
شده

Control and Machine Learning

خرید،
و یا
طراحی و ساخت
ربات های اجتماعی -
شناختی
با توجه به نیازهای مورد
نظر

Design and Fabrication

Common Approach in Social Robotics

رویکرد متدائل در حوزه رباتیک اجتماعی

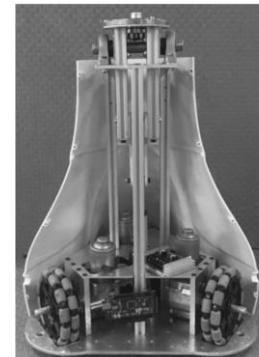
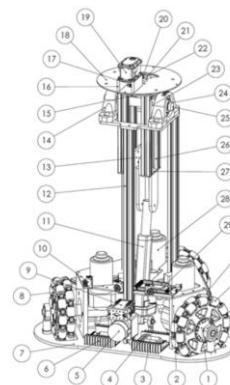
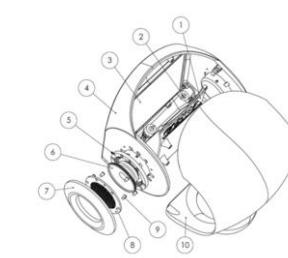
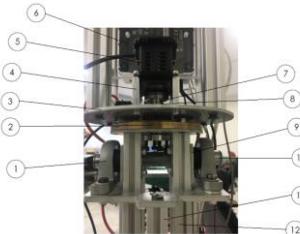
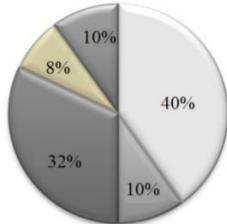
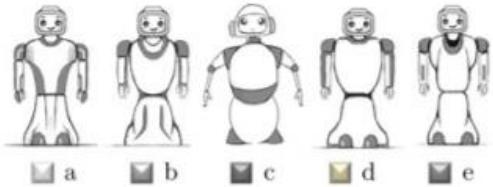
شناسایی یک نیاز در جامعه (عمدتاً برای کودکان)

- ▶ **Physical appearance of robots**
انجام مطالعات میدانی و
مدخلات بالینی
- ▶ **Human-Robot Interaction**
بررسی مقبولیت،
آموزش،
دانش و...
- ▶ **Evaluation of interventions** *(will be studied later)*

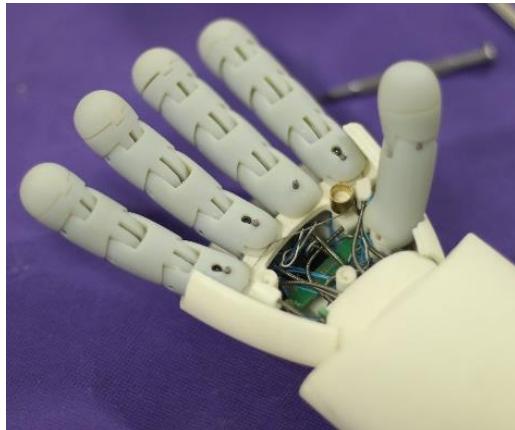
Clinical Interventions

Control and Machine Learning

Design and Fabrication







Physical appearance of robots

- ▶ A person interacting with a robot is struck first by the robot's physical appearance.
- ▶ There is **little consistency** in physical appearance of social robots;
 - ▶ has ranged across many levels of **anthropomorphism**, *including humanoid, animal-like, cartoon-like*, and machinelike (nonbiomimetic) systems.
 - ▶ stylized features to a realistic and/or complex appearance.
 - ▶ Various Degrees of Freedom (DoF)


Physical appearance of robots

Arash-I: A social robot buddy to support children with cancer in a hospital environment

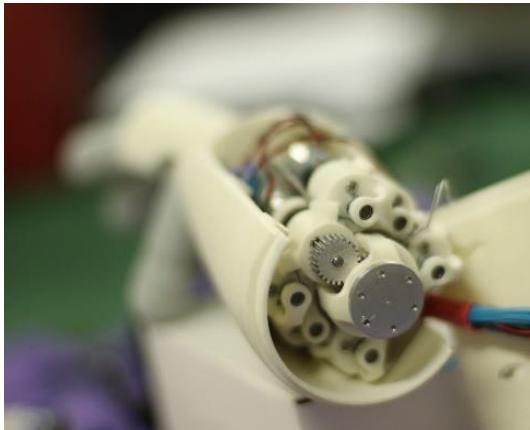
Physical appearance of robots

Robot Design

1 Thumb first phalanx

2 Bowden cable

3 Guiding pulley

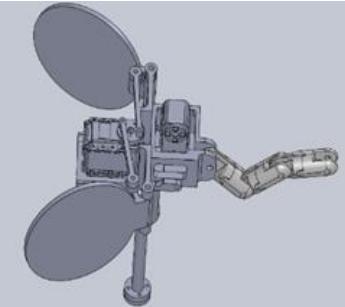
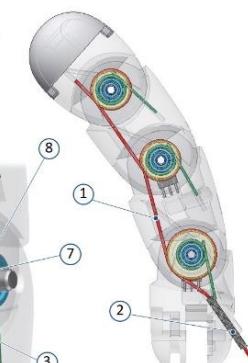

4 Joint pulley

5 Neodymium magnet

6 Hall effect sensor

7 Torsion spring

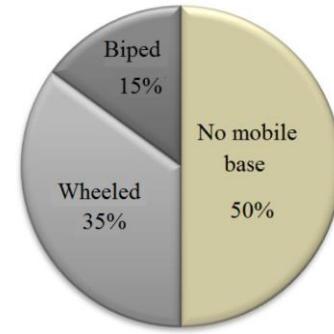
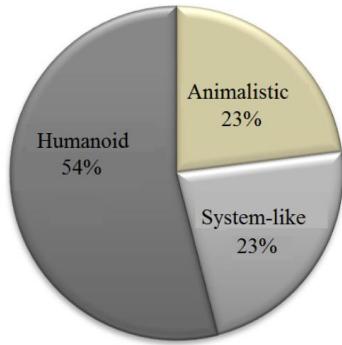
8 Cable sheath



1 Silk cable

2 Cable sheath

3 Joint pulley

4 Hall effect sensor



5 Steel dowel pin

Physical appearance of robots

A survey on social Robots' DoF

Number	Robot name	Grasping ability	Degrees of freedom					
			Face	Neck	Arm × 2	Waist	Platform	SUM
(1)	Leonardo	Yes	32	0	40	2	12	69
(2)	ASIMO	Yes	0	3	32	3	12	57
(3)	iCub	Yes	3	3	38	0	3	53
(4)	Flash	Yes	8	3	28	2	12	52
(5)	REEM-C	Yes	0	2	28	2	12	44
(6)	Nexi	Yes	15	4	18	0	4	41
(7)	Simon	Yes	9	4	22	2	0	37
(8)	FACE	No			0	0	0	32
(9)	Care-o-bot 4	Yes	0	4	18	4	3	29
(10)	Infanoid	Yes	7	3	16	3	0	29
(11)	Nao	Yes	0	2	12	1	10	25
(12)	Amigo	Yes	0	2	16	1	3	22
(13)	RIBA	No	0	3	14	2	3	22
(14)	Kismet	No	18	3	0	0	0	21
(15)	Rh-1	No	0	1	8	0	12	21
(16)	Probo	No	18	3	0	0	0	21
(17)	Eddie	No	18	3	0	0	0	21
(18)	Miio	Yes	5	2	10	1	3	21
(19)	Pepper	No	0	2	12	3	3	20
(20)	Bandit	Yes	3	2	12	0	3	20
(21)	Kaspar	No	5	3	8	1	0	17
(22)	Dr. Arashl	No	0	2	8	2	3	15
(23)	Pleo	No	2	2	4	1	4	13
(24)	iCat	No	11	2	0	0	0	13
(25)	Huggable	No	2	3	6	1	0	12
(26)	Troy	No	0	2	8	0	0	10
(27)	Paro	No	2	2	4	0	0	8
(28)	Maggie	No	0	2	2	0	3	7
(29)	MonarCH	No	0	1	2	0	3	6
(30)	Robota	No	0	1	2	0	2	5
(31)	Gostai Jazz	No	0	2	0	0	3	5
(32)	Buddy	No	0	2	0	0	3	5
(33)	Iromec	No	0	1	1	0	3	5
(34)	Aisoy	No	2	2	0	0	0	4
(35)	Muu	No	2	2	0	0	0	4
(36)	Keepon	No	0	2	0	2	0	4
(37)	Tito	No	0	1	2	0	0	3
(38)	Leka	No	0	0	0	0	3	3
(39)	Romibo	No	0	0	0	0	3	3
(40)	Jibo	No	0	1	0	1	0	2

■ انواع سر و چهره های ربات های اجتماعی و شناختی:

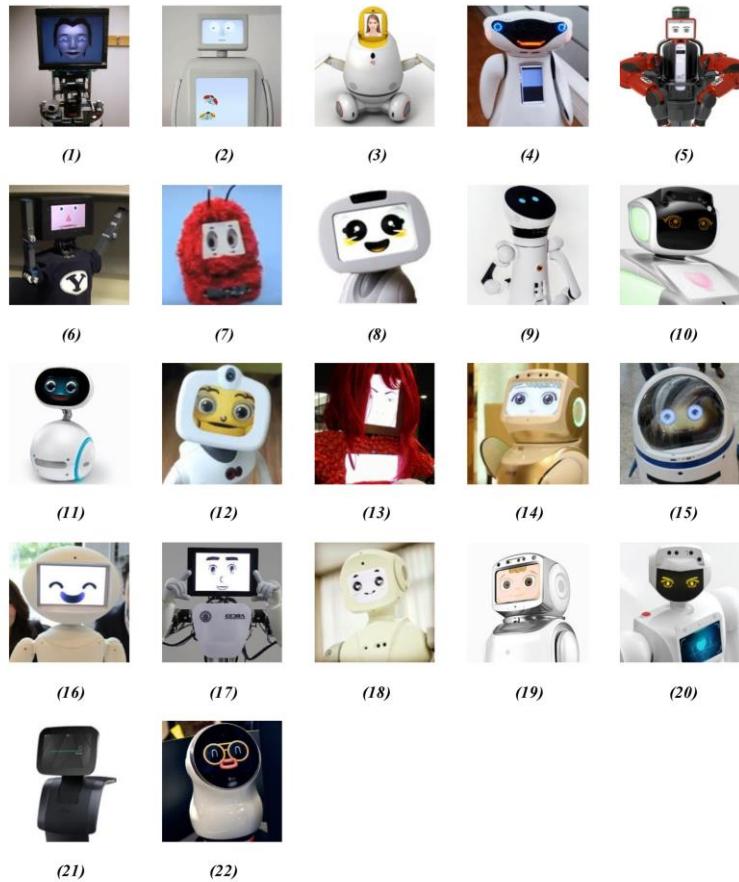
- سر با اجزاء مکانیکی (مکاترونیکی)
- استفاده از صفحه نمایش تخت (تبلتی)
- پوست صورت با قابلیت ارتجاعی (اندروید)
- شبیه سازی ظاهری برخی از عناصر ساده چهره
- استفاده از پروژکتور جهت متحرک سازی و نمایش حالات چهره بر روی یک سطح نازک و نیمه شفاف

Physical appearance of robots

A survey on social Robots' DoF

سر با اجزاء مکانیکی

ردیف	نام ربات	تعداد درجات آزادی در سر و گردن	سال تولید
(1)	<i>WE-2</i>	-	1995
(2)	<i>Kismet</i>	21	1997
(3)	<i>WE-3RII</i>	-	1998
(4)	<i>WE-3RV</i>	-	2001
(5)	<i>Infanoid</i>	8	2001
(6)	<i>Aryan</i>	8	2003
(7)	<i>WE-4R</i>	-	2004
(8)	<i>Mertz</i>	13	2004
(9)	<i>Bandit</i>	6	2004
(10)	<i>iCat</i>	14	2005
(11)	<i>Mr. Clock Radio</i>	-	2007
(12)	<i>Kobian</i>	10	2009
(13)	<i>RoboThespian</i>	-	2009
(14)	<i>Samuel</i>	15	2010
(15)	<i>Flobi</i>	18	2010
(16)	<i>Simon</i>	13	2010
(17)	<i>iCub</i>	6	2011
(18)	<i>Nexi</i>	21	2011
(19)	<i>S2 Humanoid</i>	7	2012
(20)	<i>Fritz</i>	13	2013
(21)	<i>Aisoy</i>	4	2014
(22)	<i>Muecas</i>	-	2014
(23)	<i>Flash</i>	10	2015
(24)	<i>Athena</i>	-	2016
(25)	<i>University of Tehran</i>	14	2017
(26)	<i>Alena</i>	6	2017

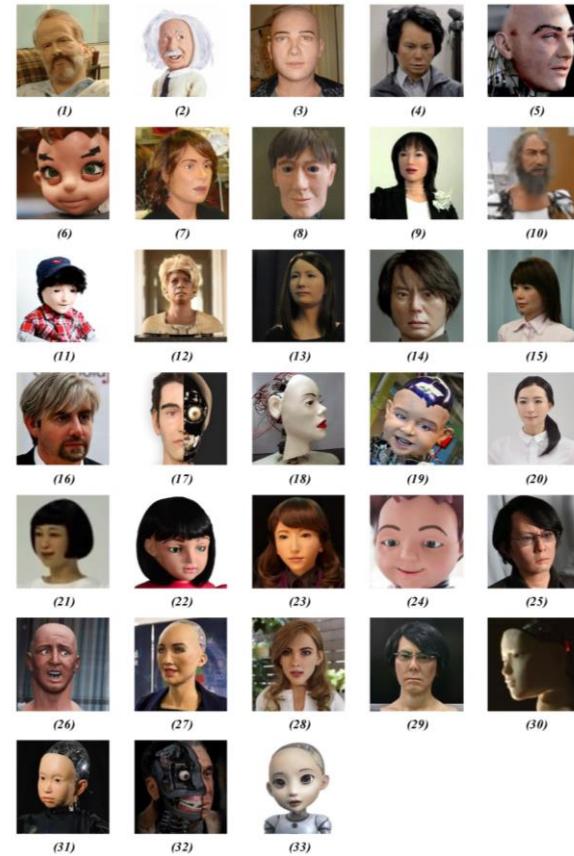


Physical appearance of robots

A survey on social Robots' DoF

نمایش نمایش تفت به عنوان صورت

ردیف	نام ربات	سال تولید	تعداد درجات آزادی در سر و گردن
(1)	<i>Grace</i>	2002	0
(2)	<i>Iromeo</i>	2010	1
(3)	<i>EngKey</i>	2010	1
(4)	<i>Monarch</i>	2011	1
(5)	<i>Baxter</i>	2012	0
(6)	<i>Troy</i>	2012	2
(7)	<i>Romibo</i>	2015	0
(8)	<i>Buddy</i>	2015	2
(9)	<i>Care-O-ot 4</i>	2015	4
(10)	<i>Sanbot Elf</i>	2016	2
(11)	<i>ASUS Zenbo</i>	2016	2
(12)	<i>Robelf</i>	2016	2
(13)	<i>Fortune Teller Robot</i>	2016	2
(14)	<i>Zunpeng Xiaobao</i>	2016	2
(15)	<i>Little Chubby</i>	2016	0
(16)	<i>LuxAI</i>	2016	2
(17)	<i>Rasa</i>	2016	3
(18)	<i>Dr. Arash</i>	2017	2
(19)	<i>Sanbot Nano</i>	2017	2
(20)	<i>Sanbot Max</i>	2017	2
(21)	<i>Temi Robot</i>	2017	1
(22)	<i>LG CLOi</i>	2018	0



Physical appearance of robots

A survey on social Robots' DoF

پوست صورت با تقابلیت ارتباعی

ردیف	نام ربات	سال تولید	تعداد درجات آزادی در سر و گردن
(1)	Philip K Dick	2005	36
(2)	Albert HUBO	2005	28
(3)	Jules	2006	-
(4)	Geminoid HI-1	2006	-
(5)	Joey Chaos	2007	-
(6)	Zeno	2007	32
(7)	Alice (Eva)	2008	-
(8)	Roman	2008	-
(9)	Actroid	2009	-
(10)	Ibn Sina	2009	30
(11)	Kaspar	2009	8
(12)	BINA48	2010	32
(13)	Geminoid F	2010	11
(14)	Geminoid HI-2	2010	13
(15)	Repliee Q2	2011	-
(16)	Geminoid DK	2011	12
(17)	ToMoMi	2012	23
(18)	Animatronic Head (David Ng)	2012	16
(19)	Diego-San	2013	27
(20)	Kodomoroid	2014	-
(21)	Otonaroid	2014	-
(22)	Alice	2014	11
(23)	Erica	2015	-
(24)	Milo	2015	-
(25)	Geminoid HI-4	2015	12
(26)	Han	2015	-
(27)	Sophia	2016	-
(28)	Mark I	2016	-
(29)	Geminoid HI-5	2017	-
(30)	Alter	2017	-
(31)	ibuki	2018	-
(32)	Mesmer	2018	-
(33)	Little Sophia	2019	-

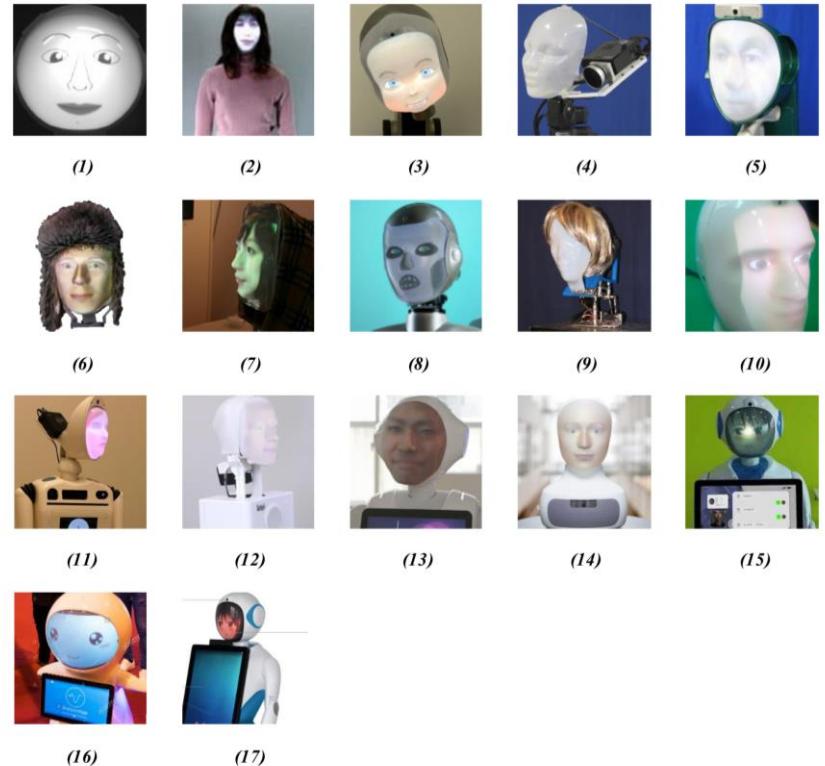


Physical appearance of robots

A survey on social Robots' DoF

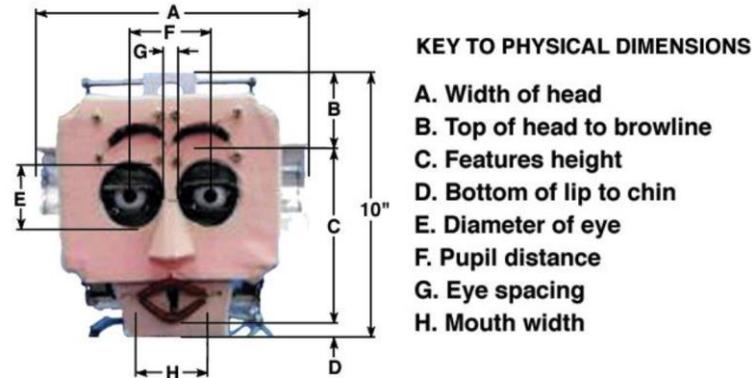
سر با اجزای ساده غیر متحرک

ردیف	نام ربات	سال تولید	تعداد درجات آزادی در سر و گردن
(1)	<i>ASIMO</i>	2000	3
(2)	<i>Nao</i>	2004	2
(3)	<i>Maggie</i>	2007	2
(4)	<i>RH-1</i>	2008	1
(5)	<i>RIBA</i>	2009	3
(6)	<i>TAIZO</i>	2009	2
(7)	<i>REEM-C</i>	2013	2
(8)	<i>Pepper</i>	2014	2

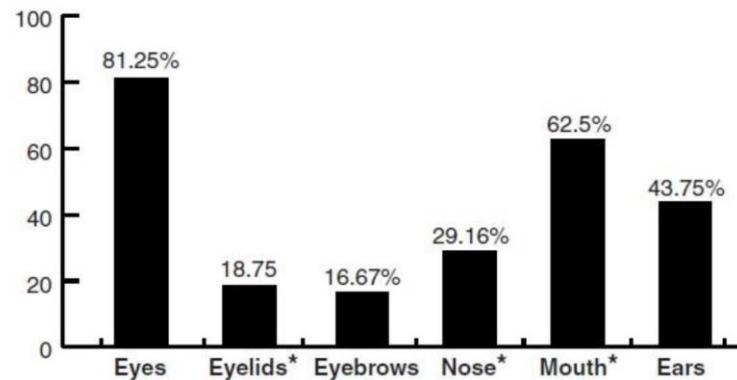


Physical appearance of robots

A survey on social Robots' DoF


س ب پ ر ک تور

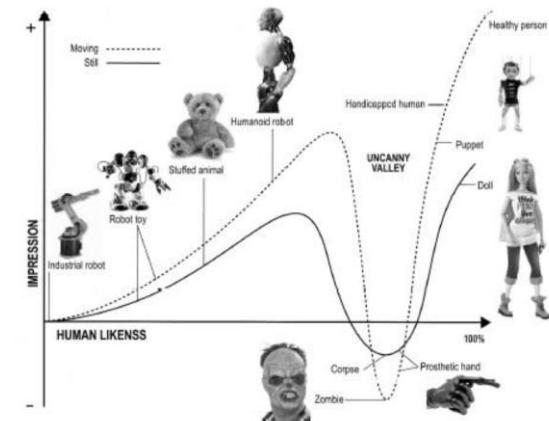
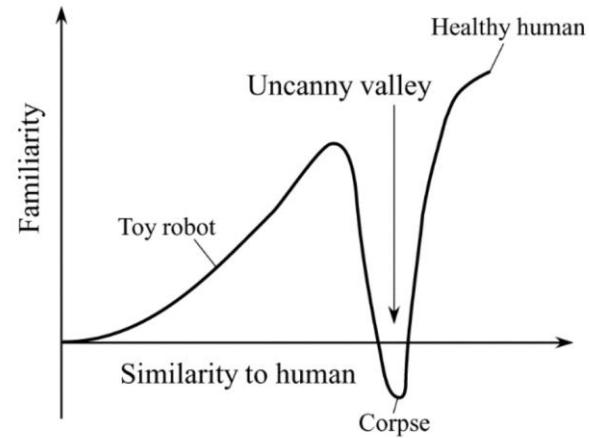
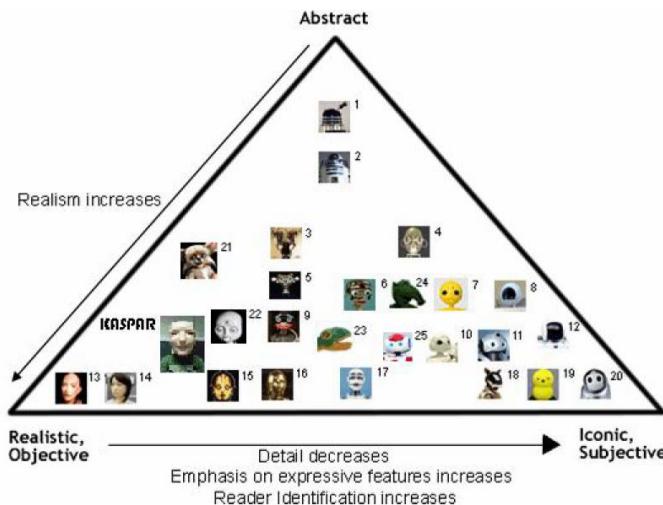
ردیف	نام ربات	سال تولید	تعداد درجات آزادی در سر و گردن
(1)	Dome	2005	3
(2)	Chatty	2007	-
(3)	LightHead	2009	-
(4)	Mask-bot	2011	-
(5)	Mask-bot 2i	2012	-
(6)	Furhat	2012	-
(7)	LiveMask	2013	-
(8)	Socibot	2014	-
(9)	ExpressionBot	2014	-
(10)	LightHead v4	2015	-
(11)	Ryan	2015	-
(12)	ID-Match	2016	-
(13)	Digital Shaman	2017	2
(14)	Furhat v2	2018	3
(15)	CSJBot	2018	-
(16)	Snow Robot	2018	0
(17)	Alice Plus	2018	2


Physical appearance of robots

جمع بندی طراحی سر ربات های اجتماعی

حداکثر	متوسط	حداقل	قطر چشم
4.75 in	1.75 in	0.25 in	فاصله مردمک تا مردمک
11.75 in	4 in	1.375 in	عرض دهان
9.25 in	3.75 in	0.875 in	عرض سر
20 in	9.63 in	5.25 in	قسمت بالا
62.5 %	35 %	8.75 %	قسمت وسط
100 %	60 %	28.75 %	قسمت میانی
27.5 %	11.88 %	6.25 %	

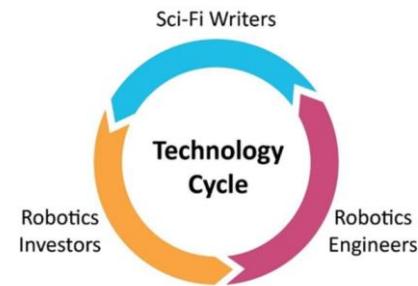
مکانیکی	نمایشگر تخت	اندروید	با اجزاء ساده	با پروژکتور	هزینه‌ی راه‌اندازی
گران	ازان	بسیار گران	نسبتاً ارزان	نسبتاً ارزان	هزینه‌ی نگهداری
گران	گران	بسیار ارزان	بسیار ارزان	بسیار ارزان	مقام بودن
زیاد	زیاد	کم	کم	زیاد	انعطاف‌پذیری
زیاد	کم	کم	کم	زیاد	واقعی بودن
کم	کم	زیاد	زیاد	کم	احتمال ورود به دره‌ی وهمی
متوسط	زیاد	زیاد	زیاد	متوسط	پذیرش توسعه مخاطب
خوب	نسبتاً خوب	نسبتاً خوب	نسبتاً خوب	متوسط	تصویر انرژی
کم	کم	زیاد	زیاد	متوسط	سر و صدا
ندارد	ندارد	زیاد	زیاد	زیاد	وزن
بسیار کم	نسبتاً زیاد	نسبتاً زیاد	بسیار کم	نسبتاً زیاد	حدودیت نور محیط
نسبتاً زیاد	ندارد	ندارد	کم	ندارد	

Physical appearance of robots

Design Consideration

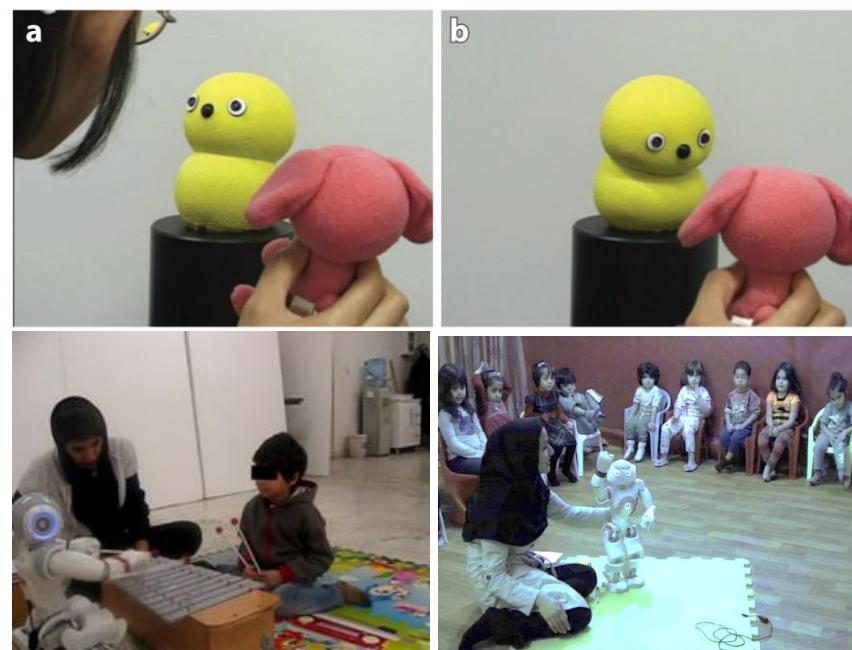
► Uncanny Valley


When a humanoid robot's appearance is **too close to a human**, it causes **fear** and **discomfort** in the audience

Physical appearance of robots

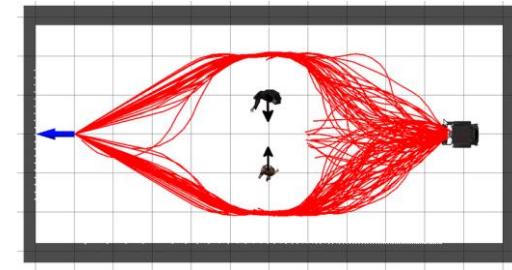
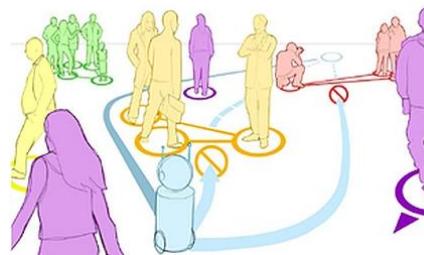
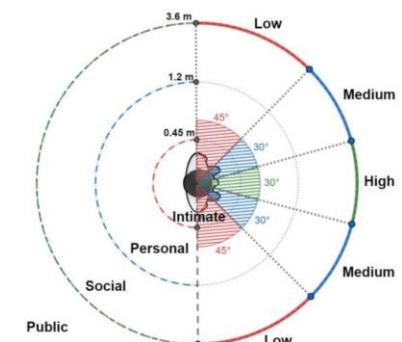
Fiction vs. Reality; a story

- ▶ During a visit to Carnegie Mellon University's Robotics Laboratory, Don Hall was inspired to create Baymax (The robot in Big Hero 6 (2014)). After making the film, Dr. Christopher G. Atkeson, a professor at that robotics lab, decided to make a real Baymax robot and defined a new field of projects called inflatable robotics. "It (Big Hero 6 (2014)) is a tremendous win for soft robotics," says Dr. Atkeson


Ref: Saffari, E., Hosseini, S. R., Taheri, A., & Meghdari, A. (2021). "Does cinema form the future of robotics?": a survey on fictional robots in sci-fi movies. *SN Applied Sciences*, 3(6), 1-13.

Human-Robot Interaction

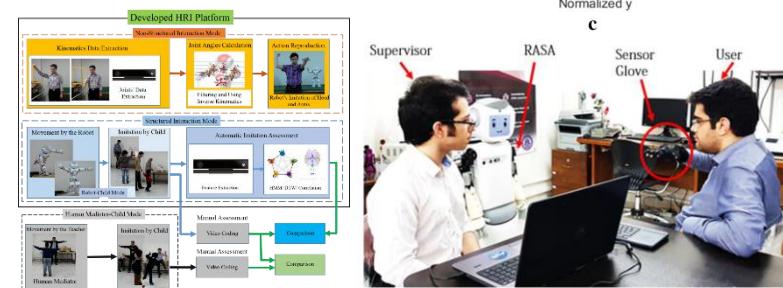
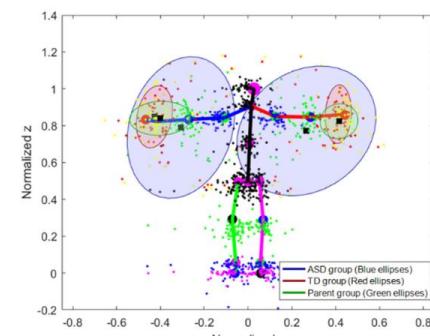
- ▶ A robot's behavior is critical to how it is **perceived** and how **effective** it might be.
- ▶ Human-robot interactions can be described both by the **behaviors** being elicited from the user and by the **robot's role** during the engagement.




- ▶ HRI
 - ▶ Targeted Behavior
 - ▶ Roles of the Robot
 - ▶ Robot Autonomy

Human-Robot Interaction

Some Research Topics in Socio-Cognitive Robotics

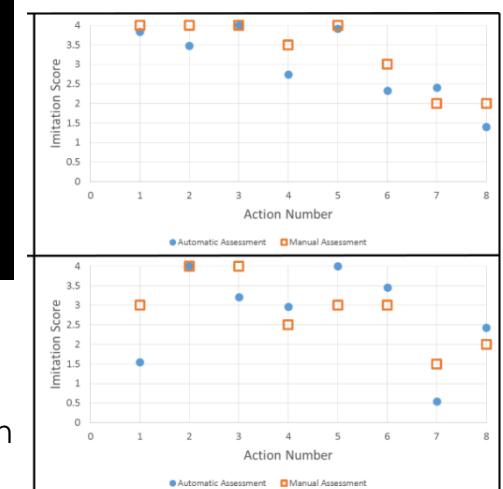
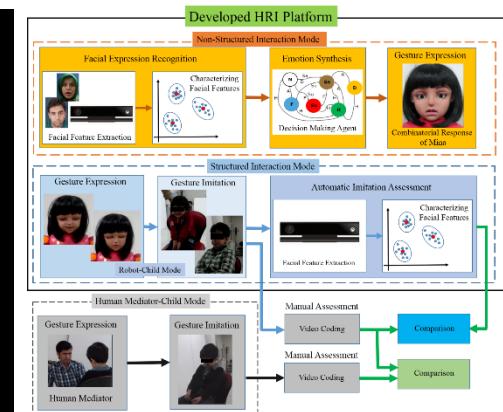
- ▶ Non-Verbal and Verbal Communication
- ▶ Facial expressions
- ▶ Proxemics
- ▶ Gaze Control System
- ▶ Turn-taking interactions
- ▶ Imitation
- ▶ Socially aware navigation
- ▶ SLAM
- ▶ Action Recognition and Pose Estimation
- ▶ Speech Recognition
- ▶ ...

نشانه‌های غیرکلامی سیگنال‌هایی هستند که برای رساندن پیغامی معنادار، به کار می‌روند و حدوداً دو سوم تعاملات انسانی را به خود اختصاص می‌دهند. انسان‌ها معمولاً از حالات چهره، اشارات بدن و دست، موقعیت سر و جویت نگاه برای جلب توجه، بیان احساس و انتقال پیام استفاده می‌کنند. نشانه‌های کلامی شامل آواها، لفون و صحبت می‌شود که به طور مستقیم توجه افراد را تحت تأثیر قرار می‌دهد.

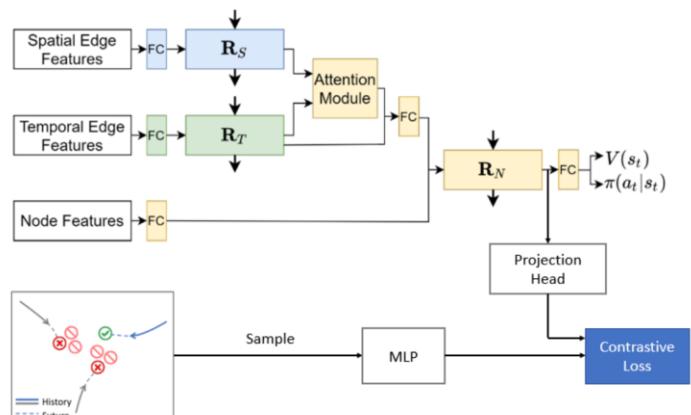
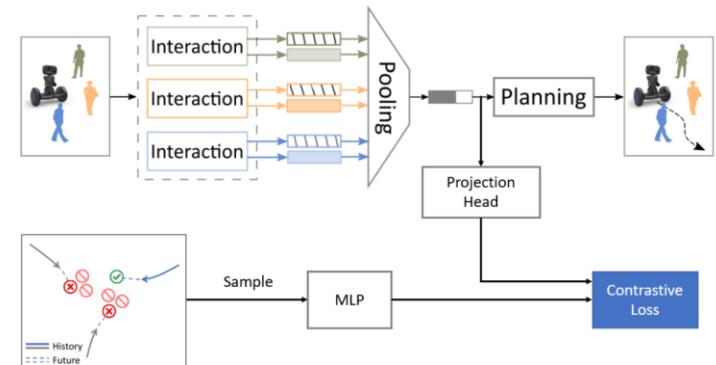
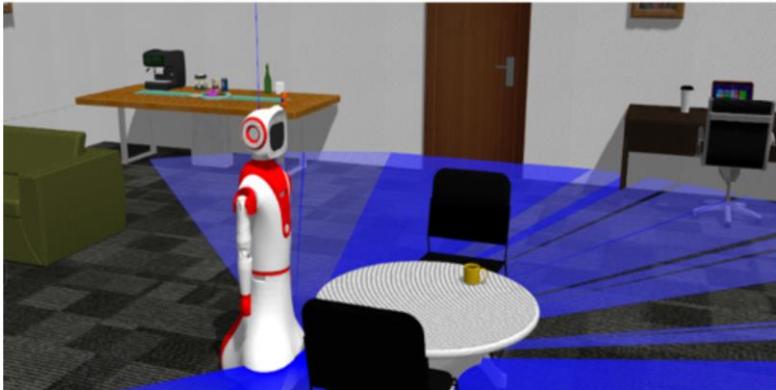
Human-Robot Interaction

Requirements for socio-cognitive robots (combining machine learning algorithms, control theory, cognition theories, etc.)



- ▶ Safe, reliable, and transparent operation
- ▶ High-level instruction and context-aware task execution
- ▶ Knowledge Acquisition and Generalization
- ▶ Adaptive Planning
- ▶ Personalized Interaction
- ▶ Self-Assessment
- ▶ Learning from Demonstration
- ▶ Evaluating the Safety of Actions
- ▶ Communicating Intentions and Collaborative Action
- ▶ Development and Self-Optimization
- ▶ Knowledge Transfer

Ref: David Vernon, Cognitive Robotics Course

Human-Robot Interaction




*Applications of Machine Learning in social human-robot interaction:
Human–Robot Facial Expression Reciprocal Interaction Platform*

- **Acceptance** rate of ~78% for children with ASD
- Developing an **automated assessment system** for assessing facial imitation tasks

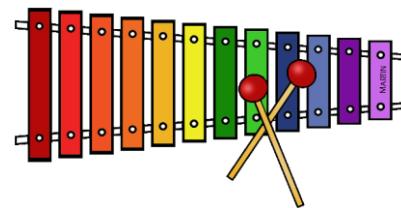
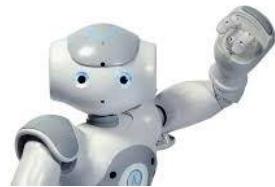
Human-Robot Interaction

*Applications of Machine Learning in social human-robot interaction:
Simultaneous Localization and Mapping (SLAM)*

Human-Robot Interaction

*Applications of Machine Learning in social human-robot interaction:
Evolution of the GAN-based Talking Gesture Generation*

Spontaneous Talking Gestures Using Generative Adversarial Networks



Igor Rodriguez, José María Martínez-Otzeta, Itziar Irigoien and Elena Lazkano

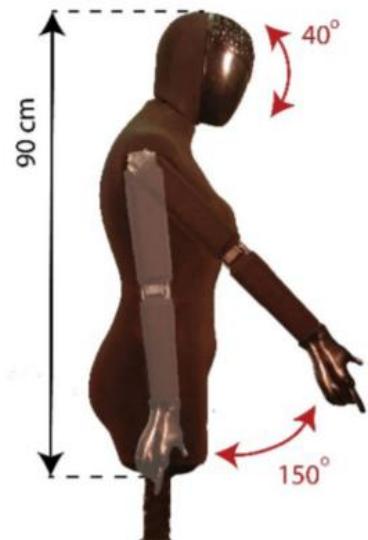
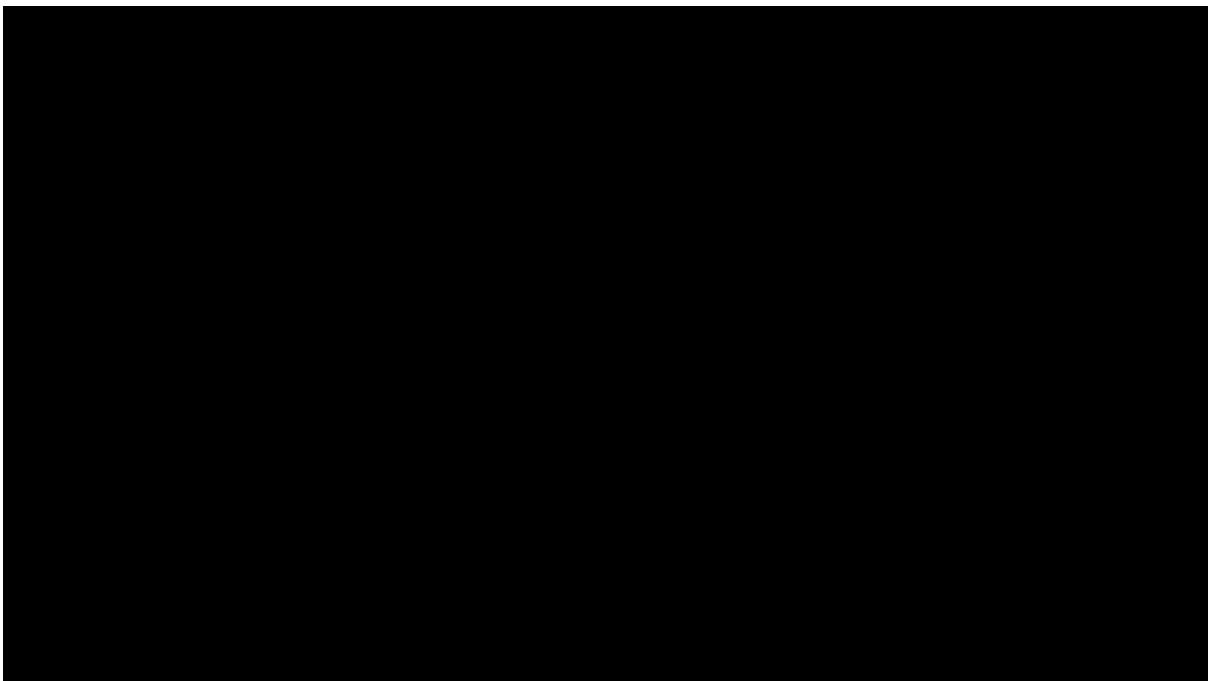
Ref: Rodriguez, I., Martínez-Otzeta, J. M., Irigoien, I., & Lazkano, E. (2019). Spontaneous talking gestures using generative adversarial networks. *Robotics and Autonomous Systems*, 114, 57-65.

Human-Robot Interaction

Cognitive Rehabilitation: Teaching Music to Children with Autism

Human-Robot Interaction

RASA-I Robot: Teaching Iranian Sign Language to Children with Hearing Problems



Best Robot Design in Software category
#3 (1) The SMOOTH Robot: Assisting C

#2 (6) RASA: A Sign Language Teaching Social Robot

Human-Robot Interaction

RoMa Robot; an Interactive Social Robot for fashion industry

Design a robot and HRI

Taban-II Robot

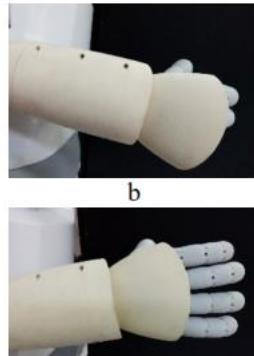
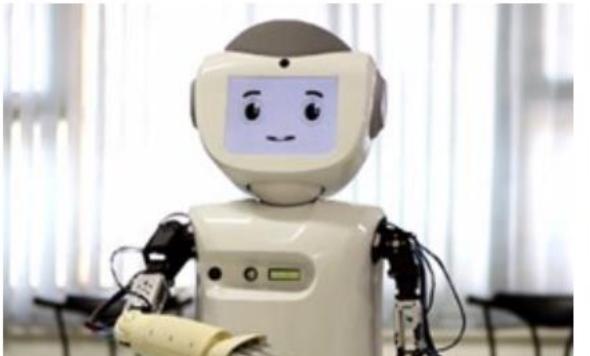
Design a robot and HRI

Apo Robot

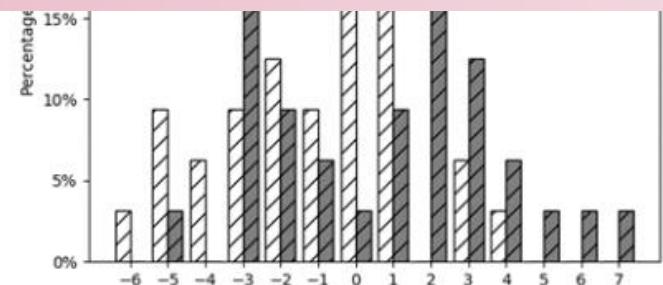
شناسایی یک نیاز در جامعه (عده‌تا برای کودکان)

و

ط
ربات

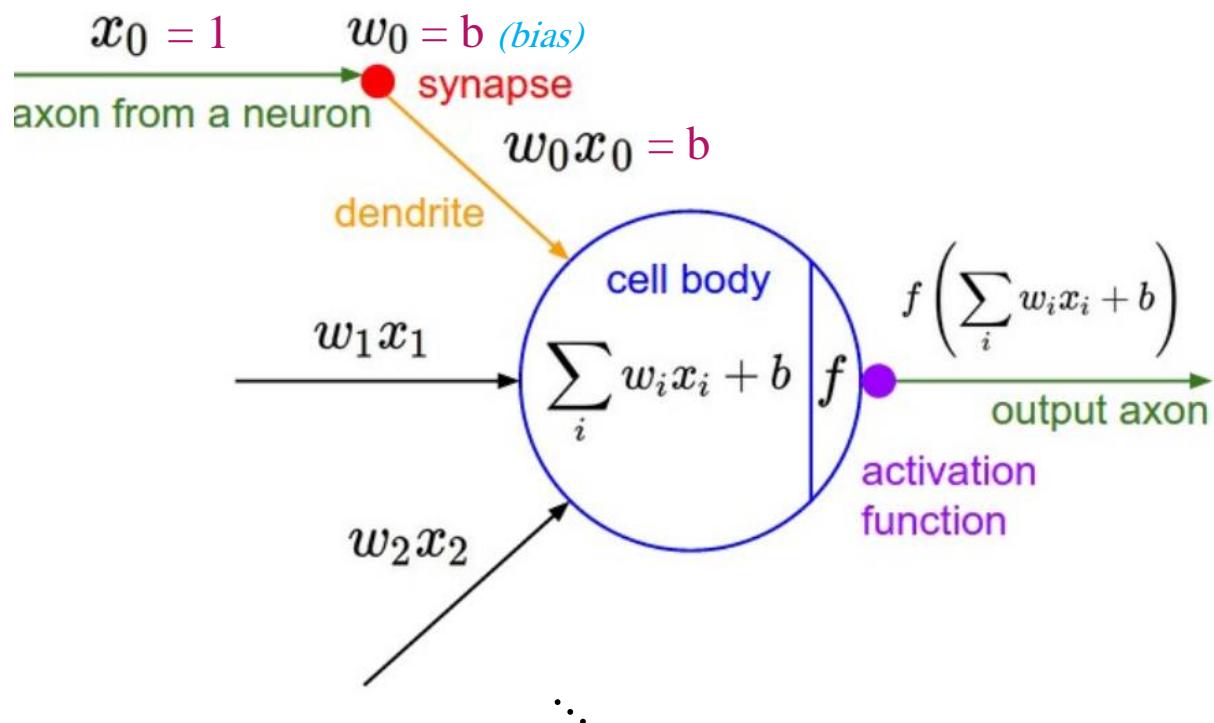


با توجه

ation

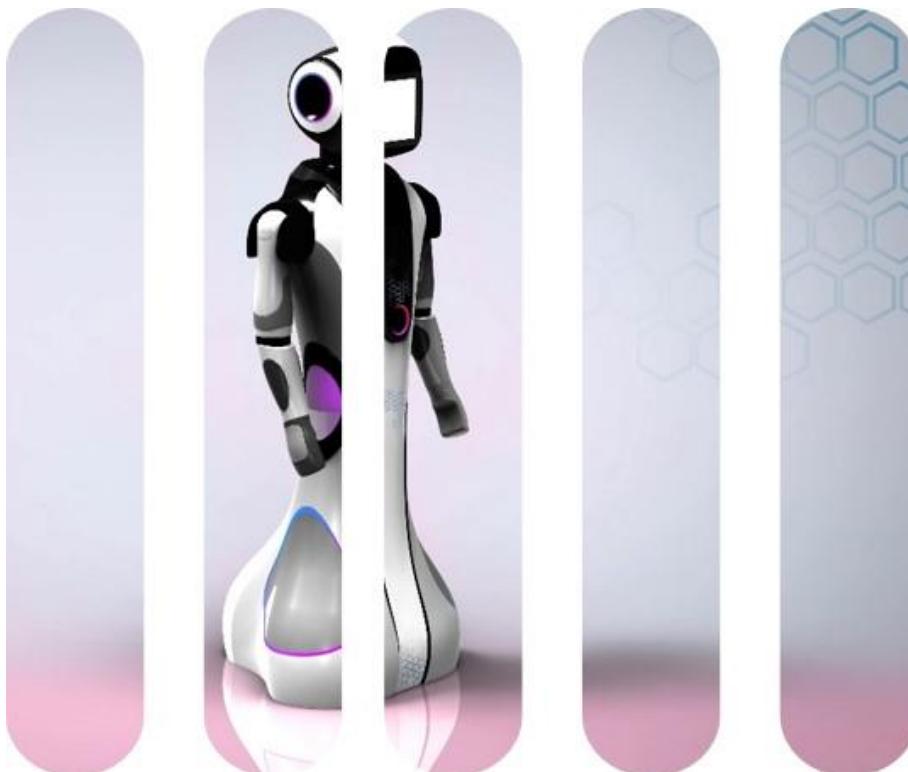

Evaluation of interventions

Social Robots and Entertainment

Evaluation of interventions will be studied in the last chapter


Overall Viewpoints about the HRI game		
No.	Questions	Answer: 1 2 3 4 5
1	I find the robotic-assisted game pleasant.	
2	I find the robot enjoyable.	
3	How understandable was the actions of the RASA robot during the RPS game?	
4	I believe that the time duration of the game was unusual. <i>(inverse question)</i>	
5	In each of the game's round, I tried to beat the robot.	
Comparison Questions		
No.	Questions	1st Mode: 1 2 3 4 5 2nd Mode: 1 2 3 4 5
6	How intelligent was the robot's decisions in playing the Rock- Paper- Scissors game?	
7	Which algorithm do you prefer to be used by the robot to continue playing the game?	First or Second?

Question # (Scores are out of 5)	Mean (SD)		T-Value	P-Value
	a: Markov Chain-based strategy	b: Random strategy		
Q6	3.344 (0.787)	2.781 (0.906)	2.65	0.010


Basics of Perceptron *in Neural Networks*

Next Session ...

Thanks for your attention

