Spaces:
Runtime error
Runtime error
Convert python script into streamlit app - first steps
Browse files
app.py
CHANGED
|
@@ -3,9 +3,11 @@ import streamlit as st
|
|
| 3 |
st.title('Numerai Example Script')
|
| 4 |
|
| 5 |
|
| 6 |
-
# content below from
|
| 7 |
# https://github.com/numerai/example-scripts/blob/master/example_model.py
|
| 8 |
-
#
|
|
|
|
|
|
|
| 9 |
|
| 10 |
import pandas as pd
|
| 11 |
from lightgbm import LGBMRegressor
|
|
@@ -27,144 +29,208 @@ from utils import (
|
|
| 27 |
)
|
| 28 |
|
| 29 |
|
| 30 |
-
# download all the things
|
| 31 |
-
|
| 32 |
napi = NumerAPI()
|
| 33 |
-
|
| 34 |
current_round = napi.get_current_round()
|
| 35 |
|
| 36 |
# Tournament data changes every week so we specify the round in their name. Training
|
| 37 |
-
# and validation data only change periodically, so no need to download
|
| 38 |
-
|
| 39 |
|
| 40 |
Path("./v4").mkdir(parents=False, exist_ok=True)
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
columns=read_columns)
|
| 61 |
-
validation_data = pd.read_parquet('v4/validation.parquet',
|
| 62 |
-
columns=read_columns)
|
| 63 |
-
live_data = pd.read_parquet(f'v4/live_{current_round}.parquet',
|
| 64 |
-
columns=read_columns)
|
| 65 |
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
)
|
| 75 |
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
print(f"model not found, creating new one")
|
| 88 |
-
params = {"n_estimators": 2000,
|
| 89 |
-
"learning_rate": 0.01,
|
| 90 |
-
"max_depth": 5,
|
| 91 |
-
"num_leaves": 2 ** 5,
|
| 92 |
-
"colsample_bytree": 0.1}
|
| 93 |
-
|
| 94 |
-
model = LGBMRegressor(**params)
|
| 95 |
-
|
| 96 |
-
# train on all of train and save the model so we don't have to train next time
|
| 97 |
-
model.fit(training_data.filter(like='feature_', axis='columns'),
|
| 98 |
-
training_data[TARGET_COL])
|
| 99 |
-
print(f"saving new model: {model_name}")
|
| 100 |
-
save_model(model, model_name)
|
| 101 |
-
|
| 102 |
-
gc.collect()
|
| 103 |
-
|
| 104 |
-
nans_per_col = live_data[live_data["data_type"] == "live"][features].isna().sum()
|
| 105 |
-
|
| 106 |
-
# check for nans and fill nans
|
| 107 |
-
if nans_per_col.any():
|
| 108 |
-
total_rows = len(live_data[live_data["data_type"] == "live"])
|
| 109 |
-
print(f"Number of nans per column this week: {nans_per_col[nans_per_col > 0]}")
|
| 110 |
-
print(f"out of {total_rows} total rows")
|
| 111 |
-
print(f"filling nans with 0.5")
|
| 112 |
-
live_data.loc[:, features] = live_data.loc[:, features].fillna(0.5)
|
| 113 |
-
|
| 114 |
-
else:
|
| 115 |
-
print("No nans in the features this week!")
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
# double check the feature that the model expects vs what is available to prevent our
|
| 119 |
-
# pipeline from failing if Numerai adds more data and we don't have time to retrain!
|
| 120 |
-
model_expected_features = model.booster_.feature_name()
|
| 121 |
-
if set(model_expected_features) != set(features):
|
| 122 |
-
print(f"New features are available! Might want to retrain model {model_name}.")
|
| 123 |
-
validation_data.loc[:, f"preds_{model_name}"] = model.predict(
|
| 124 |
-
validation_data.loc[:, model_expected_features])
|
| 125 |
-
live_data.loc[:, f"preds_{model_name}"] = model.predict(
|
| 126 |
-
live_data.loc[:, model_expected_features])
|
| 127 |
-
|
| 128 |
-
gc.collect()
|
| 129 |
-
|
| 130 |
-
# neutralize our predictions to the riskiest features
|
| 131 |
-
validation_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize(
|
| 132 |
-
df=validation_data,
|
| 133 |
-
columns=[f"preds_{model_name}"],
|
| 134 |
-
neutralizers=riskiest_features,
|
| 135 |
-
proportion=1.0,
|
| 136 |
-
normalize=True,
|
| 137 |
-
era_col=ERA_COL
|
| 138 |
-
)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
columns=[f"preds_{model_name}"],
|
| 143 |
-
neutralizers=riskiest_features,
|
| 144 |
-
proportion=1.0,
|
| 145 |
-
normalize=True,
|
| 146 |
-
era_col=ERA_COL
|
| 147 |
-
)
|
| 148 |
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
validation_data["prediction"].to_csv(f"validation_predictions_{current_round}.csv")
|
| 155 |
-
live_data["prediction"].to_csv(f"live_predictions_{current_round}.csv")
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
|
| 161 |
-
# fast_mode=True so that we skip some of the stats that are slower to calculate
|
| 162 |
-
validation_stats = validation_metrics(validation_data, [model_to_submit, f"preds_{model_name}"], example_col=EXAMPLE_PREDS_COL, fast_mode=True, target_col=TARGET_COL)
|
| 163 |
-
print(validation_stats[["mean", "sharpe"]].to_markdown())
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
st.title('Numerai Example Script')
|
| 4 |
|
| 5 |
|
| 6 |
+
# content below adapted from
|
| 7 |
# https://github.com/numerai/example-scripts/blob/master/example_model.py
|
| 8 |
+
#
|
| 9 |
+
|
| 10 |
+
IS_RUNNING_IN_HUGGING_FACE = False
|
| 11 |
|
| 12 |
import pandas as pd
|
| 13 |
from lightgbm import LGBMRegressor
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
|
|
|
|
|
|
|
| 32 |
napi = NumerAPI()
|
|
|
|
| 33 |
current_round = napi.get_current_round()
|
| 34 |
|
| 35 |
# Tournament data changes every week so we specify the round in their name. Training
|
| 36 |
+
# and validation data only change periodically, so no need to download
|
| 37 |
+
# them every time.
|
| 38 |
|
| 39 |
Path("./v4").mkdir(parents=False, exist_ok=True)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
@st.cache
|
| 43 |
+
def download_dataset():
|
| 44 |
+
print('download_dataset')
|
| 45 |
+
|
| 46 |
+
if IS_RUNNING_IN_HUGGING_FACE:
|
| 47 |
+
from datasets import load_dataset_builder
|
| 48 |
+
ds_builder = load_dataset_builder("Numerati/numerai-datasets")
|
| 49 |
+
else:
|
| 50 |
+
napi.download_dataset("v4/train.parquet")
|
| 51 |
+
napi.download_dataset("v4/validation.parquet")
|
| 52 |
+
napi.download_dataset("v4/validation_example_preds.parquet")
|
| 53 |
+
napi.download_dataset("v4/features.json")
|
| 54 |
+
|
| 55 |
+
napi.download_dataset("v4/live.parquet", f"v4/live_{current_round}.parquet")
|
| 56 |
+
print('done download_dataset')
|
| 57 |
+
|
| 58 |
+
@st.cache
|
| 59 |
+
def load_dataset(feature_set: str):
|
| 60 |
+
print('load_dataset with feature_set', feature_set)
|
| 61 |
+
# read the feature metadata and get a feature set (or all the features)
|
| 62 |
+
with open("v4/features.json", "r") as f:
|
| 63 |
+
feature_metadata = json.load(f)
|
| 64 |
+
# features = list(feature_metadata["feature_stats"].keys()) # get all the features
|
| 65 |
+
# features = feature_metadata["feature_sets"]["small"] # get the small
|
| 66 |
+
# feature set
|
| 67 |
+
features = feature_metadata["feature_sets"][feature_set] # get the medium feature set
|
| 68 |
+
# read in just those features along with era and target columns
|
| 69 |
+
read_columns = features + [ERA_COL, DATA_TYPE_COL, TARGET_COL]
|
| 70 |
+
|
| 71 |
+
# note: sometimes when trying to read the downloaded data you get an error about invalid magic parquet bytes...
|
| 72 |
+
# if so, delete the file and rerun the napi.download_dataset to fix the
|
| 73 |
+
# corrupted file
|
| 74 |
+
training_data = pd.read_parquet('v4/train.parquet',
|
| 75 |
+
columns=read_columns)
|
| 76 |
+
validation_data = pd.read_parquet('v4/validation.parquet',
|
| 77 |
+
columns=read_columns)
|
| 78 |
+
live_data = pd.read_parquet(f'v4/live_{current_round}.parquet',
|
| 79 |
columns=read_columns)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
# pare down the number of eras to every 4th era
|
| 82 |
+
# every_4th_era = training_data[ERA_COL].unique()[::4]
|
| 83 |
+
# training_data = training_data[training_data[ERA_COL].isin(every_4th_era)]
|
| 84 |
|
| 85 |
+
# getting the per era correlation of each feature vs the target
|
| 86 |
+
all_feature_corrs = training_data.groupby(ERA_COL).apply(
|
| 87 |
+
lambda era: era[features].corrwith(era[TARGET_COL])
|
| 88 |
+
)
|
| 89 |
|
| 90 |
+
# find the riskiest features by comparing their correlation vs
|
| 91 |
+
# the target in each half of training data; we'll use these later
|
| 92 |
+
riskiest_features = get_biggest_change_features(all_feature_corrs, 50)
|
|
|
|
| 93 |
|
| 94 |
+
# "garbage collection" (gc) gets rid of unused data and frees up memory
|
| 95 |
+
gc.collect()
|
| 96 |
+
print('done with feature_set', feature_set)
|
| 97 |
+
return training_data, validation_data, live_data, features, riskiest_features
|
| 98 |
|
| 99 |
+
feature_set = st.selectbox(
|
| 100 |
+
'Which feature set should be used?',
|
| 101 |
+
('small', 'medium', 'fncv3_features', 'v2_equivalent_features', 'v3_equivalent_features'))
|
| 102 |
|
| 103 |
+
data_load_state = st.text('Loading data...')
|
| 104 |
+
download_dataset()
|
| 105 |
+
training_data, validation_data, live_data, features, riskiest_features = load_dataset(feature_set)
|
| 106 |
+
data_load_state.text('Loading data...done!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
st.subheader('Raw data')
|
| 109 |
+
st.write(training_data.head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
st.subheader('Model Configuration')
|
| 112 |
|
| 113 |
+
n_estimators = st.slider('n_estimators', 100, 10000, 2000)
|
| 114 |
+
learning_rate = st.slider('learning_rate', 0.0001, 0.1, 0.01)
|
| 115 |
+
max_depth = st.slider('max_depth', 2, 20, 5)
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
params = {"n_estimators": n_estimators,
|
| 118 |
+
"learning_rate": learning_rate,
|
| 119 |
+
"max_depth": max_depth,
|
| 120 |
+
"num_leaves": 2 ** 5,
|
| 121 |
+
"colsample_bytree": 0.1
|
| 122 |
+
}
|
| 123 |
|
| 124 |
+
model_name = f"model_target"
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
@st.cache
|
| 127 |
+
def get_model_and_fit(model_name, *params):
|
| 128 |
+
print('get_model_and_fit')
|
| 129 |
+
model = load_model(model_name)
|
| 130 |
+
if not model:
|
| 131 |
+
with st.spinner('Wait model training...'):
|
| 132 |
+
print(f"model not found, creating new one")
|
| 133 |
+
|
| 134 |
+
model = LGBMRegressor(**params)
|
| 135 |
+
|
| 136 |
+
# train on all of train and save the model so we don't have to
|
| 137 |
+
# train next time
|
| 138 |
+
model.fit(training_data.filter(like='feature_', axis='columns'),
|
| 139 |
+
training_data[TARGET_COL])
|
| 140 |
+
print(f"saving new model: {model_name}")
|
| 141 |
+
save_model(model, model_name)
|
| 142 |
+
st.success('Done model training!')
|
| 143 |
+
|
| 144 |
+
gc.collect()
|
| 145 |
+
print('done get_model_and_fit')
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
has_model_preds = False
|
| 150 |
+
|
| 151 |
+
@st.cache
|
| 152 |
+
def get_model_preds(model_name, *params):
|
| 153 |
+
print('get_model_preds')
|
| 154 |
+
model = load_model(model_name)
|
| 155 |
+
|
| 156 |
+
has_model_preds = False
|
| 157 |
+
nans_per_col = live_data[live_data["data_type"]
|
| 158 |
+
== "live"][features].isna().sum()
|
| 159 |
+
|
| 160 |
+
# check for nans and fill nans
|
| 161 |
+
if nans_per_col.any():
|
| 162 |
+
total_rows = len(live_data[live_data["data_type"] == "live"])
|
| 163 |
+
print(f"Number of nans per column this week: {nans_per_col[nans_per_col > 0]}")
|
| 164 |
+
print(f"out of {total_rows} total rows")
|
| 165 |
+
print(f"filling nans with 0.5")
|
| 166 |
+
live_data.loc[:, features] = live_data.loc[:, features].fillna(0.5)
|
| 167 |
+
|
| 168 |
+
else:
|
| 169 |
+
print("No nans in the features this week!")
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# double check the feature that the model expects vs what is available to prevent our
|
| 173 |
+
# pipeline from failing if Numerai adds more data and we don't have time
|
| 174 |
+
# to retrain!
|
| 175 |
+
model_expected_features = model.booster_.feature_name()
|
| 176 |
+
if set(model_expected_features) != set(features):
|
| 177 |
+
print(f"New features are available! Might want to retrain model {model_name}.")
|
| 178 |
+
validation_data.loc[:, f"preds_{model_name}"] = model.predict(
|
| 179 |
+
validation_data.loc[:, model_expected_features])
|
| 180 |
+
live_data.loc[:, f"preds_{model_name}"] = model.predict(
|
| 181 |
+
live_data.loc[:, model_expected_features])
|
| 182 |
+
|
| 183 |
+
gc.collect()
|
| 184 |
+
|
| 185 |
+
# neutralize our predictions to the riskiest features
|
| 186 |
+
validation_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize(
|
| 187 |
+
df=validation_data,
|
| 188 |
+
columns=[f"preds_{model_name}"],
|
| 189 |
+
neutralizers=riskiest_features,
|
| 190 |
+
proportion=1.0,
|
| 191 |
+
normalize=True,
|
| 192 |
+
era_col=ERA_COL
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
live_data[f"preds_{model_name}_neutral_riskiest_50"] = neutralize(
|
| 196 |
+
df=live_data,
|
| 197 |
+
columns=[f"preds_{model_name}"],
|
| 198 |
+
neutralizers=riskiest_features,
|
| 199 |
+
proportion=1.0,
|
| 200 |
+
normalize=True,
|
| 201 |
+
era_col=ERA_COL
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
model_to_submit = f"preds_{model_name}_neutral_riskiest_50"
|
| 205 |
+
|
| 206 |
+
# rename best model to "prediction" and rank from 0 to 1 to meet upload
|
| 207 |
+
# requirements
|
| 208 |
+
validation_data["prediction"] = validation_data[model_to_submit].rank(pct=True)
|
| 209 |
+
live_data["prediction"] = live_data[model_to_submit].rank(pct=True)
|
| 210 |
+
validation_prediction_fname = f"validation_predictions_{current_round}.csv"
|
| 211 |
+
validation_data["prediction"].to_csv(validation_prediction_fname)
|
| 212 |
+
live_data["prediction"].to_csv(f"live_predictions_{current_round}.csv")
|
| 213 |
+
|
| 214 |
+
validation_preds = pd.read_parquet('v4/validation_example_preds.parquet')
|
| 215 |
+
validation_data[EXAMPLE_PREDS_COL] = validation_preds["prediction"]
|
| 216 |
+
|
| 217 |
+
# get some stats about each of our models to compare...
|
| 218 |
+
# fast_mode=True so that we skip some of the stats that are slower to calculate
|
| 219 |
+
print('start validation_metrics')
|
| 220 |
+
validation_stats = validation_metrics(validation_data, [model_to_submit, f"preds_{model_name}"], example_col=EXAMPLE_PREDS_COL, fast_mode=True, target_col=TARGET_COL)
|
| 221 |
+
st.markdown(validation_stats[["mean", "sharpe"]].to_markdown())
|
| 222 |
+
|
| 223 |
+
# st.write(f'''
|
| 224 |
+
# Done! Next steps:
|
| 225 |
+
# 1. Go to numer.ai/tournament (make sure you have an account)
|
| 226 |
+
# 2. Submit validation_predictions_{current_round}.csv to the diagnostics tool
|
| 227 |
+
# 3. Submit tournament_predictions_{current_round}.csv to the "Upload Predictions" button
|
| 228 |
+
# ''')
|
| 229 |
+
has_model_preds = True
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
st.button('Start model training', on_click=get_model_and_fit, args=[model_name, params])
|
| 233 |
+
st.button('Start model evaluation', on_click=get_model_preds, args=[model_name, params])
|
| 234 |
+
|
| 235 |
+
if has_model_preds:
|
| 236 |
+
st.download_button('Validation data for diagnostics tool', validation_data["prediction"], validation_prediction_fname)
|