Spaces:
Sleeping
Sleeping
File size: 14,474 Bytes
590a604 6bae907 590a604 ee1a8a3 1fbc47b 6bae907 2965473 1fbc47b 6bae907 2965473 1fbc47b 6bae907 1fbc47b 2965473 1fbc47b 6bae907 1ec7405 6bae907 2965473 6bae907 2965473 6bae907 2965473 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 1fbc47b 6bae907 a18e93d 6bae907 1fbc47b 6bae907 1fbc47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
Dataset download script for LexiMind.
Downloads training datasets from HuggingFace Hub and Project Gutenberg:
- GoEmotions: 28 emotion labels (43K samples)
- Yahoo Answers: 10 topic labels (1.4M samples, subset to 200K)
- CNN/DailyMail + BookSum: Summarization (100K + 9.6K samples)
- Gutenberg: Classic books for inference demos
Author: Oliver Perrin
Date: December 2025
"""
from __future__ import annotations
import argparse
import json
import random
import socket
import sys
from pathlib import Path
from typing import Any, cast
from urllib.error import URLError
from urllib.request import urlopen
from datasets import ClassLabel, DatasetDict, load_dataset
from datasets import Sequence as DatasetSequence
from tqdm import tqdm
PROJECT_ROOT = Path(__file__).resolve().parents[1]
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from src.utils.config import load_yaml
DOWNLOAD_TIMEOUT = 60
# --------------- Label Definitions ---------------
EMOTION_LABELS = [
"admiration",
"amusement",
"anger",
"annoyance",
"approval",
"caring",
"confusion",
"curiosity",
"desire",
"disappointment",
"disapproval",
"disgust",
"embarrassment",
"excitement",
"fear",
"gratitude",
"grief",
"joy",
"love",
"nervousness",
"optimism",
"pride",
"realization",
"relief",
"remorse",
"sadness",
"surprise",
"neutral",
]
TOPIC_LABELS = [
"Society & Culture",
"Science & Mathematics",
"Health",
"Education & Reference",
"Computers & Internet",
"Sports",
"Business & Finance",
"Entertainment & Music",
"Family & Relationships",
"Politics & Government",
]
# --------------- Utility Functions ---------------
def _normalize_label(label: object, label_names: list[str]) -> str:
"""Convert a label index or raw value into a string name.
- Valid integer indices are mapped to label_names.
- Everything else is stringified for robustness.
"""
if isinstance(label, int) and 0 <= label < len(label_names):
return label_names[label]
return str(label)
def _emotion_records(dataset_split: Any, label_names: list[str]) -> list[dict[str, object]]:
"""Yield emotion records with resilient label handling."""
records: list[dict[str, object]] = []
for row in dataset_split:
text = str(getattr(row, "text", None) or row.get("text", ""))
raw_labels = getattr(row, "label", None) or row.get("label") or row.get("labels", [])
# Normalize to list
if isinstance(raw_labels, list):
label_values = raw_labels
elif raw_labels is None:
label_values = []
else:
label_values = [raw_labels]
emotions = [_normalize_label(lbl, label_names) for lbl in label_values]
if text:
records.append({"text": text, "emotions": emotions})
return records
def _topic_records(dataset_split: Any, label_names: list[str]) -> list[dict[str, object]]:
"""Yield topic records with resilient label handling."""
records: list[dict[str, object]] = []
for row in dataset_split:
text = str(getattr(row, "text", None) or row.get("text", ""))
raw_label = getattr(row, "label", None) or row.get("label") or row.get("topic")
if isinstance(raw_label, list):
label_value = raw_label[0] if raw_label else ""
else:
label_value = raw_label
topic = _normalize_label(label_value, label_names) if label_value is not None else ""
if text:
records.append({"text": text, "topic": topic})
return records
def _write_jsonl(records: list[dict], destination: Path, desc: str = "Writing") -> None:
"""Write records to JSONL file with progress bar."""
destination.parent.mkdir(parents=True, exist_ok=True)
with destination.open("w", encoding="utf-8") as f:
for record in tqdm(records, desc=desc, leave=False):
f.write(json.dumps(record, ensure_ascii=False) + "\n")
def gutenberg_download(url: str, output_path: str) -> None:
"""Download a text file from Project Gutenberg."""
target = Path(output_path)
target.parent.mkdir(parents=True, exist_ok=True)
try:
with urlopen(url, timeout=DOWNLOAD_TIMEOUT) as response:
content = response.read()
target.write_bytes(content)
except (URLError, socket.timeout, OSError) as e:
raise RuntimeError(f"Failed to download '{url}': {e}") from e
# --------------- Emotion Dataset (GoEmotions) ---------------
def download_emotion_dataset(output_dir: Path, config: dict) -> None:
"""Download GoEmotions dataset with 28 emotion labels."""
print("\nοΏ½οΏ½ Downloading GoEmotions (28 emotions)...")
dataset_name = config.get("dataset", "google-research-datasets/go_emotions")
dataset_config = config.get("config", "simplified")
ds = cast(DatasetDict, load_dataset(dataset_name, dataset_config))
output_dir.mkdir(parents=True, exist_ok=True)
# Get label names from dataset
label_feature = ds["train"].features.get("labels")
inner_feature = getattr(label_feature, "feature", None)
if isinstance(label_feature, DatasetSequence) and isinstance(inner_feature, ClassLabel):
label_names = cast(list[str], inner_feature.names)
else:
label_names = EMOTION_LABELS
for split_name, split in ds.items():
records = []
for item in tqdm(split, desc=f"Processing {split_name}", leave=False):
row = cast(dict[str, Any], item)
text = row.get("text", "")
label_indices = row.get("labels", [])
# Convert indices to label names
emotions = [label_names[i] for i in label_indices if 0 <= i < len(label_names)]
if text and emotions:
records.append({"text": text, "emotions": emotions})
output_path = output_dir / f"{split_name}.jsonl"
_write_jsonl(records, output_path, f"Writing {split_name}")
print(f" β {split_name}: {len(records):,} samples -> {output_path}")
# Save label names
labels_path = output_dir / "labels.json"
labels_path.write_text(json.dumps(label_names, indent=2))
print(f" β Labels ({len(label_names)}): {labels_path}")
# --------------- Topic Dataset (Yahoo Answers) ---------------
def download_topic_dataset(output_dir: Path, config: dict) -> None:
"""Download Yahoo Answers dataset with 10 topic labels."""
print("\nπ₯ Downloading Yahoo Answers (10 topics)...")
dataset_name = config.get("dataset", "yahoo_answers_topics")
max_samples = config.get("max_samples", 200000)
ds = cast(DatasetDict, load_dataset(dataset_name))
output_dir.mkdir(parents=True, exist_ok=True)
# Get label names
label_feature = ds["train"].features.get("topic")
if isinstance(label_feature, ClassLabel):
label_names = label_feature.names
else:
label_names = TOPIC_LABELS
for split_name, split in ds.items():
# Determine sample limit for this split
if split_name == "train":
limit = max_samples
else:
limit = min(len(split), max_samples // 10)
# Random sample if needed
indices = list(range(len(split)))
if len(indices) > limit:
random.seed(42)
indices = random.sample(indices, limit)
records = []
for idx in tqdm(indices, desc=f"Processing {split_name}", leave=False):
item = cast(dict[str, Any], split[idx])
# Combine question and best answer for richer text
question = item.get("question_title", "") + " " + item.get("question_content", "")
answer = item.get("best_answer", "")
text = (question + " " + answer).strip()
topic_idx = item.get("topic", 0)
topic = label_names[topic_idx] if 0 <= topic_idx < len(label_names) else str(topic_idx)
if text and len(text) > 50: # Filter very short texts
records.append({"text": text, "topic": topic})
output_path = output_dir / f"{split_name}.jsonl"
_write_jsonl(records, output_path, f"Writing {split_name}")
print(f" β {split_name}: {len(records):,} samples -> {output_path}")
# Save label names
labels_path = output_dir / "labels.json"
labels_path.write_text(json.dumps(label_names, indent=2))
print(f" β Labels ({len(label_names)}): {labels_path}")
# --------------- Summarization Dataset (CNN/DailyMail + BookSum) ---------------
def download_summarization_datasets(output_dir: Path, config: list[dict]) -> None:
"""Download summarization datasets (CNN/DailyMail and BookSum)."""
print("\nπ₯ Downloading Summarization datasets...")
output_dir.mkdir(parents=True, exist_ok=True)
all_train, all_val, all_test = [], [], []
for ds_config in config:
name = ds_config.get("name", "unknown")
dataset_name = ds_config.get("dataset")
dataset_config = ds_config.get("config")
source_field = ds_config.get("source_field", "article")
target_field = ds_config.get("target_field", "highlights")
max_samples = ds_config.get("max_samples")
print(f"\n Loading {name}...")
if not dataset_name:
print(f" β Skipping {name}: no dataset specified")
continue
if dataset_config:
ds = cast(DatasetDict, load_dataset(str(dataset_name), str(dataset_config)))
else:
ds = cast(DatasetDict, load_dataset(str(dataset_name)))
for split_name, split in ds.items():
split_str = str(split_name)
# Determine limit
limit = max_samples if max_samples else len(split)
if split_str != "train":
limit = min(len(split), limit // 10)
indices = list(range(min(len(split), limit)))
records = []
for idx in tqdm(indices, desc=f"{name}/{split_str}", leave=False):
item = cast(dict[str, Any], split[idx])
source = item.get(source_field, "")
target = item.get(target_field, "")
if source and target and len(str(source)) > 100:
records.append({"source": source, "summary": target})
# Route to appropriate split
if "train" in split_str:
all_train.extend(records)
elif "val" in split_str or "validation" in split_str:
all_val.extend(records)
else:
all_test.extend(records)
print(f" β {split_name}: {len(records):,} samples")
# Write combined files
if all_train:
_write_jsonl(all_train, output_dir / "train.jsonl", "Writing train")
print(f" β Combined train: {len(all_train):,} samples")
if all_val:
_write_jsonl(all_val, output_dir / "validation.jsonl", "Writing validation")
print(f" β Combined validation: {len(all_val):,} samples")
if all_test:
_write_jsonl(all_test, output_dir / "test.jsonl", "Writing test")
print(f" β Combined test: {len(all_test):,} samples")
# --------------- Book Downloads (Gutenberg) ---------------
def download_books(books_dir: Path, config: list[dict]) -> None:
"""Download classic books from Project Gutenberg."""
print("\nπ₯ Downloading Gutenberg books...")
books_dir.mkdir(parents=True, exist_ok=True)
for book in config:
name = book.get("name", "unknown")
url = book.get("url")
output = book.get("output", str(books_dir / f"{name}.txt"))
if not url:
continue
output_path = Path(output)
if output_path.exists():
print(f" β {name}: already exists")
continue
try:
print(f" β³ {name}: downloading...")
gutenberg_download(url, str(output_path))
print(f" β {name}: {output_path}")
except Exception as e:
print(f" β {name}: {e}")
# --------------- Main Entry Point ---------------
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Download LexiMind training datasets")
parser.add_argument(
"--config", default="configs/data/datasets.yaml", help="Dataset config path"
)
parser.add_argument(
"--skip-summarization", action="store_true", help="Skip summarization datasets"
)
parser.add_argument("--skip-emotion", action="store_true", help="Skip emotion dataset")
parser.add_argument("--skip-topic", action="store_true", help="Skip topic dataset")
parser.add_argument("--skip-books", action="store_true", help="Skip Gutenberg books")
return parser.parse_args()
def main() -> None:
args = parse_args()
# Load config
config_path = Path(args.config)
if not config_path.exists():
print(f"Config not found: {config_path}")
sys.exit(1)
config = load_yaml(str(config_path)).data
raw_paths = config.get("raw", {})
downloads = config.get("downloads", {})
print("=" * 60)
print("LexiMind Dataset Download")
print("=" * 60)
# Download emotion dataset
if not args.skip_emotion:
emotion_config = downloads.get("emotion", {})
emotion_dir = Path(raw_paths.get("emotion", "data/raw/emotion"))
download_emotion_dataset(emotion_dir, emotion_config)
# Download topic dataset
if not args.skip_topic:
topic_config = downloads.get("topic", {})
topic_dir = Path(raw_paths.get("topic", "data/raw/topic"))
download_topic_dataset(topic_dir, topic_config)
# Download summarization datasets
if not args.skip_summarization:
summ_config = downloads.get("summarization", [])
if isinstance(summ_config, list):
summ_dir = Path(raw_paths.get("summarization", "data/raw/summarization"))
download_summarization_datasets(summ_dir, summ_config)
# Download books
if not args.skip_books:
books_config = downloads.get("books", [])
if isinstance(books_config, list):
books_dir = Path(raw_paths.get("books", "data/raw/books"))
download_books(books_dir, books_config)
print("\n" + "=" * 60)
print("β
Download complete!")
print("=" * 60)
if __name__ == "__main__":
main()
|