Spaces:
Running
Running
File size: 13,908 Bytes
590a604 ee1a8a3 1fbc47b 67c3a83 1ec7405 1fbc47b 590a604 67c3a83 1fbc47b 67c3a83 1fbc47b d18b34d 1fbc47b d18b34d 1fbc47b d18b34d 1fbc47b 1ec7405 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 b43ba56 590a604 b43ba56 67c3a83 1ec7405 67c3a83 1ec7405 67c3a83 b43ba56 590a604 b43ba56 d18b34d 590a604 d18b34d 67c3a83 590a604 b43ba56 590a604 b43ba56 590a604 b43ba56 d18b34d 590a604 d18b34d 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1ec7405 590a604 1ec7405 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b 590a604 1fbc47b b43ba56 1fbc47b 590a604 1fbc47b 590a604 1fbc47b b43ba56 1fbc47b 590a604 1fbc47b b43ba56 1fbc47b 590a604 1fbc47b 590a604 b43ba56 1fbc47b 590a604 1fbc47b 590a604 b43ba56 1fbc47b 590a604 b43ba56 1fbc47b 590a604 d18b34d 590a604 1ec7405 590a604 1fbc47b 590a604 1fbc47b 1ec7405 590a604 1ec7405 67c3a83 1ec7405 67c3a83 590a604 1ec7405 590a604 1ec7405 1fbc47b 1ec7405 1fbc47b d18b34d b43ba56 1ec7405 1fbc47b 590a604 67c3a83 590a604 1fbc47b 590a604 1ec7405 d18b34d 590a604 1fbc47b 67c3a83 590a604 d18b34d 1fbc47b 590a604 1fbc47b 590a604 d18b34d 1fbc47b 590a604 d18b34d ba4cb76 1fbc47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
"""
Training script for LexiMind.
Orchestrates dataset loading, model construction, torch.compile optimization,
and multi-task training with checkpoint management.
Author: Oliver Perrin
Date: December 2025
"""
from __future__ import annotations
import json
import logging
import os
import re
import sys
import time
import warnings
from pathlib import Path
from typing import Dict, Sequence, cast
# Suppress torch inductor warnings that mess up progress bars
os.environ.setdefault("TORCH_LOGS", "-all")
warnings.filterwarnings("ignore", category=UserWarning, module="torch._inductor")
warnings.filterwarnings("ignore", category=FutureWarning, module="mlflow")
logging.getLogger("torch._inductor").setLevel(logging.ERROR)
logging.getLogger("torch._dynamo").setLevel(logging.ERROR)
import hydra
import torch
from omegaconf import DictConfig, OmegaConf
PROJECT_ROOT = Path(__file__).resolve().parents[1]
if str(PROJECT_ROOT) not in sys.path:
sys.path.insert(0, str(PROJECT_ROOT))
from src.data.dataloader import (
build_emotion_dataloader,
build_summarization_dataloader,
build_topic_dataloader,
)
from src.data.dataset import (
EmotionDataset,
SummarizationDataset,
TopicDataset,
load_emotion_jsonl,
load_summarization_jsonl,
load_topic_jsonl,
)
from src.data.tokenization import Tokenizer, TokenizerConfig
from src.models.factory import ModelConfig, build_multitask_model
from src.training.trainer import Trainer, TrainerConfig
from src.training.utils import set_seed
from src.utils.io import load_state, save_state
from src.utils.labels import LabelMetadata, save_label_metadata
# --------------- Data Loading ---------------
SPLIT_ALIASES: Dict[str, Sequence[str]] = {
"train": ("train",),
"val": ("val", "validation"),
"test": ("test",),
}
def load_splits(data_dir: Path, loader) -> Dict[str, list]:
"""Load train/val/test splits from data directory."""
splits = {}
for name, aliases in SPLIT_ALIASES.items():
for alias in aliases:
for ext in ("jsonl", "json"):
path = data_dir / f"{alias}.{ext}"
if path.exists():
splits[name] = loader(str(path))
break
if name in splits:
break
if name not in splits:
raise FileNotFoundError(f"Missing {name} split in {data_dir}")
return splits
def limit_samples(splits: Dict[str, list], cfg: DictConfig) -> None:
"""Apply sample limits for dev/debug runs."""
for split, key in [("train", "max_train_samples"), ("val", "max_val_samples")]:
limit = cfg.get(key)
if limit and split in splits and len(splits[split]) > limit:
splits[split] = splits[split][: int(limit)]
print(f" {split}: limited to {limit} samples")
# --------------- Model Compilation ---------------
def compile_model(model: torch.nn.Module) -> torch.nn.Module:
"""Compile model with inductor backend (optimized for speed)."""
print(f" -> Enabling torch.compile for {model.__class__.__name__}...")
from src.training.safe_compile import apply_safe_config, compile_model_safe
# Apply safe configuration first
apply_safe_config()
# Compile with default mode (inductor) - most stable
return compile_model_safe(model, mode="default")
# --------------- Main ---------------
@hydra.main(version_base=None, config_path="../configs", config_name="config")
def main(cfg: DictConfig) -> None:
start_time = time.perf_counter()
print(OmegaConf.to_yaml(cfg))
set_seed(cfg.seed)
# Benchmark mode: skip saving checkpoints (for speed testing)
benchmark_mode = cfg.get("benchmark", False)
if benchmark_mode:
print("⚡ BENCHMARK MODE: Checkpoints will NOT be saved")
# Enable TF32 for Ampere+ GPUs (RTX 30xx/40xx) - ~2x matmul speedup
if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8:
print("✓ TF32 enabled for Ampere GPU")
torch.set_float32_matmul_precision("high")
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = True # Auto-tune convolutions
torch.backends.cuda.enable_flash_sdp(True) # Flash attention if available
torch.backends.cuda.enable_mem_efficient_sdp(True) # Memory-efficient attention
# Disable debug APIs for max speed
torch.autograd.set_detect_anomaly(False)
torch.autograd.profiler.profile(False)
torch.autograd.profiler.emit_nvtx(False)
# --------------- Load Data ---------------
data_cfg = cfg.data
trainer_cfg = cfg.training.get("trainer", {})
print("\nLoading datasets...")
summ_splits = load_splits(Path(data_cfg.processed.summarization), load_summarization_jsonl)
emot_splits = load_splits(Path(data_cfg.processed.emotion), load_emotion_jsonl)
topic_splits = load_splits(Path(data_cfg.processed.topic), load_topic_jsonl)
# Apply dev/debug sample limits
for splits in [summ_splits, emot_splits, topic_splits]:
limit_samples(splits, trainer_cfg)
# --------------- Tokenizer & Datasets ---------------
tok_cfg = data_cfg.get("tokenizer", {})
# Allow training overrides for max_length to run shorter dev sweeps
override_max_len = cfg.training.get("tokenizer_max_length")
tokenizer = Tokenizer(
TokenizerConfig(
pretrained_model_name=tok_cfg.get("pretrained_model_name", "google/flan-t5-base"),
max_length=int(override_max_len or tok_cfg.get("max_length", 512)),
lower=bool(tok_cfg.get("lower", False)),
)
)
summ_train = SummarizationDataset(summ_splits["train"])
summ_val = SummarizationDataset(summ_splits["val"])
emot_train = EmotionDataset(emot_splits["train"])
emot_val = EmotionDataset(emot_splits["val"], binarizer=emot_train.binarizer)
topic_train = TopicDataset(topic_splits["train"])
topic_val = TopicDataset(topic_splits["val"], encoder=topic_train.encoder)
# --------------- DataLoaders ---------------
dl_cfg = cfg.training.get("dataloader", {})
batch_size = int(dl_cfg.get("batch_size", 8))
num_workers = int(dl_cfg.get("num_workers", 4))
pin_memory = bool(dl_cfg.get("pin_memory", True))
max_len = tokenizer.config.max_length
train_loaders = {
"summarization": build_summarization_dataloader(
summ_train,
tokenizer,
shuffle=True,
max_source_length=max_len,
max_target_length=max_len,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
),
"emotion": build_emotion_dataloader(
emot_train,
tokenizer,
shuffle=True,
max_length=max_len,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
),
"topic": build_topic_dataloader(
topic_train,
tokenizer,
shuffle=True,
max_length=max_len,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
),
}
val_loaders = {
"summarization": build_summarization_dataloader(
summ_val,
tokenizer,
shuffle=False,
max_source_length=max_len,
max_target_length=max_len,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
),
"emotion": build_emotion_dataloader(
emot_val,
tokenizer,
shuffle=False,
max_length=max_len,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
),
"topic": build_topic_dataloader(
topic_val,
tokenizer,
shuffle=False,
max_length=max_len,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
),
}
# --------------- Model ---------------
print("\nBuilding model...")
device = torch.device(cfg.device)
model_cfg = ModelConfig(
d_model=cfg.model.d_model,
vocab_size=getattr(cfg.model, "vocab_size", None), # Override tokenizer vocab if specified
num_encoder_layers=cfg.model.num_encoder_layers,
num_decoder_layers=cfg.model.num_decoder_layers,
num_attention_heads=cfg.model.num_attention_heads,
ffn_dim=cfg.model.ffn_dim,
dropout=cfg.model.dropout,
use_pretrained=cfg.model.use_pretrained,
pretrained_model_name=cfg.model.pretrained_model_name,
activation=getattr(cfg.model, "activation", "gelu"),
use_relative_position_bias=getattr(cfg.model, "use_relative_position_bias", False),
)
model = build_multitask_model(
tokenizer,
num_emotions=len(emot_train.emotion_classes),
num_topics=len(topic_train.topic_classes),
config=model_cfg,
).to(device)
# If Training Crashes: Resume from checkpoint if provided (load before compile to avoid key mismatches)
start_epoch = 1
resume_path = cfg.get("resume_from")
if resume_path:
ckpt_path = Path(resume_path)
if ckpt_path.exists():
print(f"\n↩Resuming from checkpoint: {ckpt_path}")
load_state(model, str(ckpt_path))
# Parse epoch number robustly from filename (e.g., epoch_5.pt)
epoch_num = None
try:
# Prefer stem (no suffix); fallback to any digit sequence in name
digits = re.findall(r"\d+", ckpt_path.stem)
if digits:
epoch_num = int(digits[-1])
except Exception:
epoch_num = None
if epoch_num is not None:
start_epoch = epoch_num + 1
print(f" -> Starting from epoch {start_epoch}")
else:
print(" -> Could not parse epoch number; starting from epoch 1")
start_epoch = 1
else:
print(f"⚠ Resume checkpoint not found: {ckpt_path}. Starting from scratch.")
# Compile encoder/decoder for faster training (skip heads - small overhead)
compile_encoder = bool(cfg.training.get("compile_encoder", True))
compile_decoder = bool(cfg.training.get("compile_decoder", True))
if compile_encoder and model.encoder is not None:
from src.models.encoder import TransformerEncoder
model.encoder = cast(TransformerEncoder, compile_model(model.encoder))
if compile_decoder and model.decoder is not None:
from src.models.decoder import TransformerDecoder
model.decoder = cast(TransformerDecoder, compile_model(model.decoder))
# --------------- Optimizer & Trainer ---------------
opt_cfg = cfg.training.get("optimizer", {})
sched_cfg = cfg.training.get("scheduler", {})
optimizer = torch.optim.AdamW(
model.parameters(),
lr=float(opt_cfg.get("lr", 3e-5)),
weight_decay=float(opt_cfg.get("weight_decay", 0.01)),
)
# Clamp start_epoch to max_epochs to avoid empty loop
max_epochs = int(trainer_cfg.get("max_epochs", 1))
if start_epoch > max_epochs:
print(f"⚠ resume_from points past max_epochs ({max_epochs}); nothing to train. Setting start_epoch to {max_epochs}")
start_epoch = max_epochs
trainer = Trainer(
model=model,
optimizer=optimizer,
config=TrainerConfig(
max_epochs=max_epochs,
gradient_clip_norm=float(trainer_cfg.get("gradient_clip_norm", 1.0)),
task_weights=trainer_cfg.get("task_weights"),
label_smoothing=float(trainer_cfg.get("label_smoothing", 0.0)),
gradient_accumulation_steps=int(trainer_cfg.get("gradient_accumulation_steps", 1)),
scheduler_type=str(sched_cfg.get("name", "constant")),
warmup_steps=int(sched_cfg.get("warmup_steps", 0)),
),
device=device,
tokenizer=tokenizer,
)
# --------------- Train ---------------
def save_checkpoint(epoch: int, model: torch.nn.Module, history: Dict) -> None:
if benchmark_mode:
return # Skip saving in benchmark mode
path = Path(cfg.checkpoint_out).parent / f"epoch_{epoch}.pt"
path.parent.mkdir(parents=True, exist_ok=True)
save_state(model, str(path))
print("\nStarting training...")
history = trainer.fit(
train_loaders,
val_loaders,
checkpoint_callback=save_checkpoint,
start_epoch=start_epoch,
)
# --------------- Save Outputs ---------------
if benchmark_mode:
total_time = time.perf_counter() - start_time
print(f"\n{'=' * 50}")
print(f"⚡ Benchmark complete in {total_time:.1f}s")
print(" (No files saved in benchmark mode)")
print(f"{'=' * 50}")
return
# Best checkpoint
ckpt_path = Path(cfg.checkpoint_out)
ckpt_path.parent.mkdir(parents=True, exist_ok=True)
save_state(model, str(ckpt_path))
# Labels
labels_path = Path(cfg.labels_out)
save_label_metadata(
LabelMetadata(emotion=emot_train.emotion_classes, topic=topic_train.topic_classes),
labels_path,
)
# History
history_path = Path(cfg.history_out)
history_path.parent.mkdir(parents=True, exist_ok=True)
with history_path.open("w") as f:
json.dump(history, f, indent=2)
total_time = time.perf_counter() - start_time
print(f"\n{'=' * 50}")
print(f"Training complete in {total_time:.1f}s")
print(f" Checkpoint: {ckpt_path}")
print(f" Labels: {labels_path}")
print(f" History: {history_path}")
print(f"{'=' * 50}")
if __name__ == "__main__":
main()
|