Spaces:
Running
Running
File size: 18,971 Bytes
ba4cb76 b43ba56 ba4cb76 204fb3c ba4cb76 d18b34d 67c3a83 d18b34d ba4cb76 b43ba56 ba4cb76 d18b34d ba4cb76 d18b34d b43ba56 ba4cb76 b43ba56 d18b34d ba4cb76 d18b34d ba4cb76 d18b34d b43ba56 d18b34d ba4cb76 b43ba56 d18b34d b43ba56 204fb3c b43ba56 5a20c96 b43ba56 5a20c96 b43ba56 d18b34d b43ba56 d18b34d 67c3a83 d18b34d 204fb3c ba4cb76 d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d b43ba56 204fb3c d18b34d b43ba56 d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c b43ba56 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d b43ba56 d18b34d 204fb3c b43ba56 d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d b43ba56 d18b34d b43ba56 d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d 204fb3c d18b34d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
"""
Attention mechanisms for Transformer architecture.
This module implements the core attention mechanisms used in the Transformer model:
- ScaledDotProductAttention: Fundamental attention operation
- MultiHeadAttention: Parallel attention with learned projections
- T5RelativePositionBias: Relative position bias for T5-style attention
Doing this first for Bottom-Up implementation of the Transformer
Author: Oliver Perrin
Date: 2025-10-23
"""
import math
from typing import Optional, Tuple, cast
import torch
import torch.nn as nn
import torch.nn.functional as F
class T5RelativePositionBias(nn.Module):
"""
T5-style relative position bias for attention.
T5 uses a learned embedding table to encode relative positions between tokens.
Positions are bucketed to handle arbitrary sequence lengths efficiently.
This is added to attention scores BEFORE softmax, not to embeddings.
"""
def __init__(
self,
num_heads: int,
num_buckets: int = 32,
max_distance: int = 128,
is_decoder: bool = False,
):
super().__init__()
self.num_heads = num_heads
self.num_buckets = num_buckets
self.max_distance = max_distance
self.is_decoder = is_decoder
# Learned embedding table: (num_buckets, num_heads)
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
@staticmethod
def _relative_position_bucket(
relative_position: torch.Tensor,
bidirectional: bool = True,
num_buckets: int = 32,
max_distance: int = 128,
) -> torch.Tensor:
"""
Translate relative position to a bucket index.
T5 uses a combination of exact positions (for nearby tokens) and
logarithmically-spaced buckets (for distant tokens).
"""
relative_buckets = torch.zeros_like(relative_position, dtype=torch.long)
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).long() * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# Half buckets for exact positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# Other half for logarithmically-spaced buckets
relative_position_if_large = (
max_exact
+ (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).long()
)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(
self,
query_length: int,
key_length: int,
device: torch.device,
query_position_offset: int = 0,
) -> torch.Tensor:
"""
Compute relative position bias for attention.
Args:
query_length: Number of query positions
key_length: Number of key positions
device: Device to create tensors on
query_position_offset: Offset for query positions (for incremental decoding)
When decoding step-by-step, query_length=1 but the actual
position is past_len, so query_position_offset=past_len.
Returns: (1, num_heads, query_length, key_length)
"""
# Create position indices
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
context_position = (
context_position + query_position_offset
) # Apply offset for incremental decoding
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
# Relative position: (query_length, key_length)
relative_position = memory_position - context_position
# Convert to bucket indices
relative_position_bucket = self._relative_position_bucket(
relative_position,
bidirectional=(not self.is_decoder),
num_buckets=self.num_buckets,
max_distance=self.max_distance,
)
# Look up bias values: (query_length, key_length, num_heads)
values = self.relative_attention_bias(relative_position_bucket)
# Reshape to (1, num_heads, query_length, key_length)
values = values.permute([2, 0, 1]).unsqueeze(0)
return values
def forward(
self,
query_length: int,
key_length: int,
device: torch.device,
query_position_offset: int = 0,
) -> torch.Tensor:
return self.compute_bias(query_length, key_length, device, query_position_offset)
class ScaledDotProductAttention(nn.Module):
"""
Scaled Dot-Product Attention using PyTorch's optimized backend.
Uses F.scaled_dot_product_attention which automatically selects the best
available kernel (FlashAttention v2, Memory-Efficient Attention, or math fallback)
based on hardware and input shapes. On CUDA GPUs with appropriate compute capability,
this will use FlashAttention for significantly improved speed and memory efficiency.
See: https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
"""
def __init__(self, scale_scores: bool = True):
"""
Args:
scale_scores: Whether to scale attention scores by sqrt(d_k).
T5 does NOT scale scores, so set this to False for T5.
Standard transformers (BERT, GPT, etc.) use scaling.
"""
super().__init__()
self.scale_scores = scale_scores
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
return_attn_weights: bool = False,
position_bias: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Args:
query: (batch, num_heads, seq_q, d_k)
key: (batch, num_heads, seq_k, d_k)
value: (batch, num_heads, seq_k, d_v)
mask: Optional boolean mask, True = attend, False = mask
position_bias: Optional (1, num_heads, seq_q, seq_k) T5-style relative position bias
Returns:
output: (batch, num_heads, seq_q, d_v)
attention_weights: Optional (batch, num_heads, seq_q, seq_k)
"""
d_k = query.size(-1)
scale_factor = 1.0 / math.sqrt(d_k) if self.scale_scores else 1.0
# If we need attention weights, must use manual path
if return_attn_weights:
# Manual implementation with float32 softmax for numerical stability
scores = torch.matmul(query, key.transpose(-2, -1)) * scale_factor
if position_bias is not None:
scores = scores + position_bias
if mask is not None:
mask_bool = mask.to(dtype=torch.bool, device=scores.device)
if mask_bool.dim() == 2:
mask_bool = mask_bool.unsqueeze(1).unsqueeze(2)
elif mask_bool.dim() == 3:
mask_bool = mask_bool.unsqueeze(1)
scores = scores.masked_fill(~mask_bool, -1e4)
p_attn = F.softmax(scores.float(), dim=-1).type_as(scores)
p_attn = torch.nan_to_num(p_attn, nan=0.0, posinf=0.0, neginf=0.0)
output = torch.matmul(p_attn, value)
return output, p_attn
# Use optimized SDPA path - torch.compile friendly version
# Pre-scale query instead of using SDPA's scale parameter for better compile compatibility
# This avoids issues with inductor and custom scale values
if self.scale_scores:
query = query * scale_factor
# Build combined attention mask (float tensor added to scores)
attn_mask = None
if position_bias is not None or mask is not None:
# Start with position bias if provided
if position_bias is not None:
# Clamp position bias to prevent overflow
attn_mask = position_bias.to(dtype=query.dtype).clamp(-100, 100)
# Add mask (convert bool mask to additive float mask)
if mask is not None:
mask_bool = mask.to(dtype=torch.bool, device=query.device)
if mask_bool.dim() == 2:
mask_bool = mask_bool.unsqueeze(1).unsqueeze(2)
elif mask_bool.dim() == 3:
mask_bool = mask_bool.unsqueeze(1)
mask_float = torch.zeros(mask_bool.shape, dtype=query.dtype, device=query.device)
mask_float = mask_float.masked_fill(~mask_bool, -1e4)
if attn_mask is not None:
attn_mask = attn_mask + mask_float
else:
attn_mask = mask_float
# Use SDPA without custom scale (scale=None uses default 1/sqrt(d_k))
# For T5 (scale_scores=False), we already didn't scale query above, so default scale is wrong
# But we pre-scaled query for scaled attention, so we need scale=1.0 here
# Actually simpler: always use scale=1.0 since we handle scaling ourselves
output = F.scaled_dot_product_attention(
query,
key,
value,
attn_mask=attn_mask,
dropout_p=0.0,
is_causal=False,
scale=1.0, # We handle scaling manually above
)
return output, None
# --------------- Rotary Positional Embeddings ---------------
class RotaryEmbedding(nn.Module):
"""
Rotary Positional Embeddings (RoPE).
Encodes relative positions by rotating the query and key vectors.
Reference: https://arxiv.org/abs/2104.09864
"""
def __init__(self, dim, max_seq_len=2048):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
t = torch.arange(max_seq_len).type_as(inv_freq)
freqs = torch.einsum("i,j->ij", t, inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos", emb.cos())
self.register_buffer("sin", emb.sin())
def forward(self, x):
# x shape: (batch, num_heads, seq_len, dim)
seq_len = x.shape[2]
# Slice cos/sin to current sequence length
# unsqueeze to broadcast over batch and heads: (1, 1, seq_len, dim)
cos_buf = cast(torch.Tensor, self.cos)
sin_buf = cast(torch.Tensor, self.sin)
cos = cos_buf[:seq_len, :].unsqueeze(0).unsqueeze(0)
sin = sin_buf[:seq_len, :].unsqueeze(0).unsqueeze(0)
return (x * cos) + (self._rotate_half(x) * sin)
def _rotate_half(self, x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
# --------------- Multi-Head Attention ---------------
class MultiHeadAttention(nn.Module):
"""
Multi-Head Attention mechanism.
Allows the model to jointly attend to information from different
representation subspaces at different positions.
Transforming the input into query, key, and value representations
Args:
d_model: Dimension of model (default: 512)
num_heads: Number of attention heads (default: 8)
dropout: Dropout probability (default: 0.1)
use_rope: Whether to use Rotary Positional Embeddings (default: False)
max_len: Maximum sequence length for RoPE (default: 2048)
use_lora: Whether to use LoRA (Low-Rank Adaptation) (default: False)
lora_rank: Rank of LoRA matrices (default: 8)
lora_alpha: Scaling factor for LoRA (default: 16)
lora_dropout: Dropout probability for LoRA (default: 0.1)
scale_scores: Whether to scale attention scores by sqrt(d_k). T5 does NOT scale.
"""
def __init__(
self,
d_model: int = 512,
num_heads: int = 8,
dropout: float = 0.1,
use_rope: bool = False,
max_len: int = 2048,
use_lora: bool = False,
lora_rank: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.1,
quantization: Optional[str] = None,
scale_scores: bool = True, # T5 uses scale_scores=False
):
super().__init__()
# Assert that d_model is divisible by num_heads
# Why? Because d_k = d_model // num_heads must be an integer
assert d_model % num_heads == 0
# Assume d_v always equals d_k
self.d_model = d_model
self.num_heads = num_heads
self.d_k = d_model // num_heads
# Select Linear layer type based on quantization
Linear = nn.Linear
kwargs = {}
if quantization == "4bit":
try:
import bitsandbytes as bnb
Linear = bnb.nn.Linear4bit # type: ignore
kwargs = {"compute_dtype": torch.bfloat16, "quant_type": "nf4"}
except (ImportError, AttributeError):
print("bitsandbytes not installed or incompatible, falling back to nn.Linear")
elif quantization == "8bit":
try:
import bitsandbytes as bnb
Linear = bnb.nn.Linear8bitLt # type: ignore
except (ImportError, AttributeError):
print("bitsandbytes not installed or incompatible, falling back to nn.Linear")
# Create 4 linear layers (W_Q, W_K, W_V, W_O)
# All should be nn.Linear(d_model, d_model)
self.W_Q = Linear(d_model, d_model, **kwargs)
self.W_K = Linear(d_model, d_model, **kwargs)
self.W_V = Linear(d_model, d_model, **kwargs)
self.W_O = Linear(d_model, d_model, **kwargs)
# Create ScaledDotProductAttention instance
# Note: T5 does NOT scale attention scores by sqrt(d_k)
self.attention = ScaledDotProductAttention(scale_scores=scale_scores)
# Create dropout layer
self.dropout = nn.Dropout(p=dropout)
# RoPE
self.use_rope = use_rope
if use_rope:
self.rope = RotaryEmbedding(self.d_k, max_seq_len=max_len)
# LoRA (Low-Rank Adaptation)
self.use_lora = use_lora
if use_lora:
self.lora_rank = lora_rank
self.lora_alpha = lora_alpha
self.lora_scaling = lora_alpha / lora_rank
self.lora_dropout = nn.Dropout(p=lora_dropout)
# LoRA for Query: W_Q' = W_Q + B_q @ A_q * scaling
self.lora_q_A = nn.Linear(d_model, lora_rank, bias=False)
self.lora_q_B = nn.Linear(lora_rank, d_model, bias=False)
# LoRA for Value: W_V' = W_V + B_v @ A_v * scaling
self.lora_v_A = nn.Linear(d_model, lora_rank, bias=False)
self.lora_v_B = nn.Linear(lora_rank, d_model, bias=False)
# Initialize LoRA parameters
# A: Kaiming uniform, B: Zeros (so training starts with original behavior)
nn.init.kaiming_uniform_(self.lora_q_A.weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_q_B.weight)
nn.init.kaiming_uniform_(self.lora_v_A.weight, a=math.sqrt(5))
nn.init.zeros_(self.lora_v_B.weight)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
return_attn_weights: bool = False,
position_bias: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Args:
query: (batch, seq_len, d_model)
key: (batch, seq_len, d_model)
value: (batch, seq_len, d_model)
mask: Optional (batch, seq_len, seq_len) or (batch, 1, seq_len, seq_len)
position_bias: Optional (1, num_heads, seq_q, seq_k) T5-style relative position bias
Returns:
output: (batch, seq_len, d_model)
attention_weights: (batch, num_heads, seq_len, seq_len)
"""
batch_size = query.size(0)
# Linear projections
Q = self.W_Q(query) # (batch, seq_len, d_model)
K = self.W_K(key)
V = self.W_V(value)
# Apply LoRA if enabled
if self.use_lora:
# Q += (query @ A^T @ B^T) * scaling
# Note: nn.Linear(x) computes x @ weight.T
# So lora_q_A(x) is x @ A.T
# lora_q_B(lora_q_A(x)) is (x @ A.T) @ B.T = x @ A.T @ B.T
lora_q = self.lora_q_B(self.lora_q_A(self.lora_dropout(query))) * self.lora_scaling
Q = Q + lora_q
# V += (value @ A^T @ B^T) * scaling
lora_v = self.lora_v_B(self.lora_v_A(self.lora_dropout(value))) * self.lora_scaling
V = V + lora_v
# Split into heads
# Reshape from (batch, seq_len, d_model) to (batch, num_heads, seq_len, d_k), Apply to Q, K, V
Q = Q.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
K = K.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
V = V.view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
# Now: (batch, num_heads, seq_len, d_k)
# Now all are: (batch=2, num_heads=8, seq_len=10, d_k=64)
# Apply RoPE if enabled
if self.use_rope:
Q = self.rope(Q)
K = self.rope(K)
# Handle mask broadcasting for multi-head attention
if mask is not None:
# If mask is 3D (batch, seq, seq), add head dimension
if mask.dim() == 3:
mask = mask.unsqueeze(1) # (batch, 1, seq, seq)
# Now mask broadcasts across all heads: (batch, 1, seq, seq) → (batch, 8, seq, seq)
# Apply attention with optional position bias
output, attn_weights = self.attention(
Q, K, V, mask, return_attn_weights=return_attn_weights, position_bias=position_bias
)
# output: (batch, num_heads, seq_len, d_k)
# attn_weights: (batch, num_heads, seq_len, seq_len)
# Concatenate heads
# (batch, num_heads, seq_len, d_k) → (batch, seq_len, num_heads, d_k) → (batch, seq_len, d_model)
output = output.transpose(1, 2).contiguous()
output = output.view(
batch_size, -1, self.d_model
) # -1 in view means 'infer this dimension'
# After transpose, the tensor's memory layout
# is "scattered", contiguous() just reorganizes it in memory
# Final linear projection
output = self.W_O(output)
# Apply dropout
output = self.dropout(output)
return output, attn_weights
|