Spaces:
Running
Running
Commit
·
00d412c
1
Parent(s):
a504116
Fixed Gradio Summarization Issue
Browse files- requirements-dev.txt +2 -1
- requirements.txt +2 -1
- scripts/demo_gradio.py +52 -0
- scripts/eval_rouge.py +183 -0
requirements-dev.txt
CHANGED
|
@@ -7,4 +7,5 @@ flake8>=6.0.0
|
|
| 7 |
mypy>=1.4.0
|
| 8 |
jupyter>=1.0.0
|
| 9 |
ipywidgets>=8.0.0
|
| 10 |
-
pre-commit>=3.4.0
|
|
|
|
|
|
| 7 |
mypy>=1.4.0
|
| 8 |
jupyter>=1.0.0
|
| 9 |
ipywidgets>=8.0.0
|
| 10 |
+
pre-commit>=3.4.0
|
| 11 |
+
rouge-score>=0.1.2
|
requirements.txt
CHANGED
|
@@ -11,4 +11,5 @@ datasets>=4.4.0
|
|
| 11 |
gradio>=4.0.0
|
| 12 |
seaborn
|
| 13 |
pytest
|
| 14 |
-
matplotlib
|
|
|
|
|
|
| 11 |
gradio>=4.0.0
|
| 12 |
seaborn
|
| 13 |
pytest
|
| 14 |
+
matplotlib
|
| 15 |
+
rouge-score>=0.1.2
|
scripts/demo_gradio.py
CHANGED
|
@@ -24,6 +24,8 @@ PROJECT_ROOT = Path(__file__).resolve().parent.parent
|
|
| 24 |
if str(PROJECT_ROOT) not in sys.path:
|
| 25 |
sys.path.insert(0, str(PROJECT_ROOT))
|
| 26 |
|
|
|
|
|
|
|
| 27 |
from src.inference.factory import create_inference_pipeline
|
| 28 |
from src.inference.pipeline import EmotionPrediction, InferencePipeline, TopicPrediction
|
| 29 |
from src.utils.logging import configure_logging, get_logger
|
|
@@ -358,6 +360,39 @@ def generate_fallback_summary(text: str, max_chars: int = 320) -> str:
|
|
| 358 |
return " ".join(fragments)
|
| 359 |
|
| 360 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
SAMPLE_TEXT = (
|
| 362 |
"Artificial intelligence is rapidly transforming the technology landscape. "
|
| 363 |
"Machine learning algorithms are now capable of processing vast amounts of data, "
|
|
@@ -380,6 +415,8 @@ def create_interface() -> gr.Blocks:
|
|
| 380 |
"""
|
| 381 |
)
|
| 382 |
|
|
|
|
|
|
|
| 383 |
with gr.Row():
|
| 384 |
with gr.Column(scale=1):
|
| 385 |
input_text = gr.Textbox(
|
|
@@ -417,11 +454,25 @@ def create_interface() -> gr.Blocks:
|
|
| 417 |
columns=2,
|
| 418 |
height=400,
|
| 419 |
interactive=False,
|
|
|
|
| 420 |
)
|
| 421 |
gr.Markdown(
|
| 422 |
"These PNGs come from the visualization-focused tests in `tests/test_models` and are consumed as-is."
|
| 423 |
)
|
| 424 |
refresh_visuals = gr.Button("Refresh Visuals")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
gr.Markdown("### Download Results")
|
| 426 |
download_btn = gr.DownloadButton("Download JSON", visible=False)
|
| 427 |
|
|
@@ -432,6 +483,7 @@ def create_interface() -> gr.Blocks:
|
|
| 432 |
outputs=[summary_output, emotion_output, topic_output, attention_output, download_btn],
|
| 433 |
)
|
| 434 |
refresh_visuals.click(fn=load_visualization_gallery, inputs=None, outputs=visuals)
|
|
|
|
| 435 |
return demo
|
| 436 |
|
| 437 |
|
|
|
|
| 24 |
if str(PROJECT_ROOT) not in sys.path:
|
| 25 |
sys.path.insert(0, str(PROJECT_ROOT))
|
| 26 |
|
| 27 |
+
ROUGE_REPORT_PATH = PROJECT_ROOT / "outputs" / "rouge_validation.json"
|
| 28 |
+
|
| 29 |
from src.inference.factory import create_inference_pipeline
|
| 30 |
from src.inference.pipeline import EmotionPrediction, InferencePipeline, TopicPrediction
|
| 31 |
from src.utils.logging import configure_logging, get_logger
|
|
|
|
| 360 |
return " ".join(fragments)
|
| 361 |
|
| 362 |
|
| 363 |
+
def load_rouge_metrics():
|
| 364 |
+
columns = ["metric", "precision", "recall", "fmeasure"]
|
| 365 |
+
empty = pd.DataFrame(columns=columns)
|
| 366 |
+
if not ROUGE_REPORT_PATH.exists():
|
| 367 |
+
return empty, {"error": f"ROUGE report not found at {ROUGE_REPORT_PATH}"}
|
| 368 |
+
|
| 369 |
+
try:
|
| 370 |
+
with ROUGE_REPORT_PATH.open("r", encoding="utf-8") as handle:
|
| 371 |
+
report = json.load(handle)
|
| 372 |
+
except Exception as exc: # pragma: no cover - surfaced in UI
|
| 373 |
+
logger.error("Failed to read ROUGE report: %s", exc, exc_info=True)
|
| 374 |
+
return empty, {"error": f"Unable to parse report: {exc}", "report_path": str(ROUGE_REPORT_PATH)}
|
| 375 |
+
|
| 376 |
+
rows: list[dict[str, object]] = []
|
| 377 |
+
for metric_name, components in report.get("metrics", {}).items():
|
| 378 |
+
rows.append(
|
| 379 |
+
{
|
| 380 |
+
"metric": metric_name,
|
| 381 |
+
"precision": round(float(components.get("precision", 0.0)), 4),
|
| 382 |
+
"recall": round(float(components.get("recall", 0.0)), 4),
|
| 383 |
+
"fmeasure": round(float(components.get("fmeasure", 0.0)), 4),
|
| 384 |
+
}
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
table = pd.DataFrame(rows, columns=columns) if rows else empty
|
| 388 |
+
metadata = {
|
| 389 |
+
"num_examples": report.get("num_examples"),
|
| 390 |
+
"config": report.get("config"),
|
| 391 |
+
"report_path": str(ROUGE_REPORT_PATH),
|
| 392 |
+
}
|
| 393 |
+
return table, metadata
|
| 394 |
+
|
| 395 |
+
|
| 396 |
SAMPLE_TEXT = (
|
| 397 |
"Artificial intelligence is rapidly transforming the technology landscape. "
|
| 398 |
"Machine learning algorithms are now capable of processing vast amounts of data, "
|
|
|
|
| 415 |
"""
|
| 416 |
)
|
| 417 |
|
| 418 |
+
initial_metrics, initial_metrics_meta = load_rouge_metrics()
|
| 419 |
+
|
| 420 |
with gr.Row():
|
| 421 |
with gr.Column(scale=1):
|
| 422 |
input_text = gr.Textbox(
|
|
|
|
| 454 |
columns=2,
|
| 455 |
height=400,
|
| 456 |
interactive=False,
|
| 457 |
+
type="filepath"
|
| 458 |
)
|
| 459 |
gr.Markdown(
|
| 460 |
"These PNGs come from the visualization-focused tests in `tests/test_models` and are consumed as-is."
|
| 461 |
)
|
| 462 |
refresh_visuals = gr.Button("Refresh Visuals")
|
| 463 |
+
with gr.TabItem("Metrics"):
|
| 464 |
+
rouge_table = gr.Dataframe(
|
| 465 |
+
value=initial_metrics,
|
| 466 |
+
headers=["metric", "precision", "recall", "fmeasure"],
|
| 467 |
+
datatype=["str", "number", "number", "number"],
|
| 468 |
+
interactive=False,
|
| 469 |
+
label="ROUGE Scores",
|
| 470 |
+
)
|
| 471 |
+
rouge_meta = gr.JSON(
|
| 472 |
+
value=initial_metrics_meta,
|
| 473 |
+
label="ROUGE Run Metadata",
|
| 474 |
+
)
|
| 475 |
+
refresh_metrics = gr.Button("Refresh Metrics")
|
| 476 |
gr.Markdown("### Download Results")
|
| 477 |
download_btn = gr.DownloadButton("Download JSON", visible=False)
|
| 478 |
|
|
|
|
| 483 |
outputs=[summary_output, emotion_output, topic_output, attention_output, download_btn],
|
| 484 |
)
|
| 485 |
refresh_visuals.click(fn=load_visualization_gallery, inputs=None, outputs=visuals)
|
| 486 |
+
refresh_metrics.click(fn=load_rouge_metrics, inputs=None, outputs=[rouge_table, rouge_meta])
|
| 487 |
return demo
|
| 488 |
|
| 489 |
|
scripts/eval_rouge.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utility script to evaluate LexiMind summaries with ROUGE."""
|
| 2 |
+
from __future__ import annotations
|
| 3 |
+
|
| 4 |
+
import argparse
|
| 5 |
+
import json
|
| 6 |
+
from collections import defaultdict
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from statistics import fmean
|
| 9 |
+
from typing import Dict, Iterable, List, Sequence, Tuple
|
| 10 |
+
|
| 11 |
+
import sys
|
| 12 |
+
|
| 13 |
+
from rouge_score import rouge_scorer
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
PROJECT_ROOT = Path(__file__).resolve().parent.parent
|
| 17 |
+
if str(PROJECT_ROOT) not in sys.path:
|
| 18 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
| 19 |
+
|
| 20 |
+
from src.inference.factory import create_inference_pipeline
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def parse_args() -> argparse.Namespace:
|
| 24 |
+
parser = argparse.ArgumentParser(description="Evaluate LexiMind summaries with ROUGE metrics.")
|
| 25 |
+
parser.add_argument("data", type=Path, help="Path to JSONL file with source text and gold summaries.")
|
| 26 |
+
parser.add_argument("checkpoint", type=Path, help="Path to the trained checkpoint (e.g., checkpoints/best.pt).")
|
| 27 |
+
parser.add_argument("labels", type=Path, help="Path to label metadata (e.g., artifacts/labels.json).")
|
| 28 |
+
parser.add_argument(
|
| 29 |
+
"--tokenizer-dir",
|
| 30 |
+
type=Path,
|
| 31 |
+
default=Path("artifacts/hf_tokenizer"),
|
| 32 |
+
help="Directory containing the saved tokenizer artifacts.",
|
| 33 |
+
)
|
| 34 |
+
parser.add_argument(
|
| 35 |
+
"--model-config",
|
| 36 |
+
type=Path,
|
| 37 |
+
default=None,
|
| 38 |
+
help="Optional YAML config describing the model architecture.",
|
| 39 |
+
)
|
| 40 |
+
parser.add_argument("--device", type=str, default="cpu", help="Device to run inference on (cpu or cuda).")
|
| 41 |
+
parser.add_argument("--batch-size", type=int, default=8, help="Number of samples per inference batch.")
|
| 42 |
+
parser.add_argument(
|
| 43 |
+
"--max-samples",
|
| 44 |
+
type=int,
|
| 45 |
+
default=None,
|
| 46 |
+
help="If provided, limit evaluation to the first N samples for quick smoke tests.",
|
| 47 |
+
)
|
| 48 |
+
parser.add_argument(
|
| 49 |
+
"--max-length",
|
| 50 |
+
type=int,
|
| 51 |
+
default=128,
|
| 52 |
+
help="Maximum length to pass into the summarization head during generation.",
|
| 53 |
+
)
|
| 54 |
+
parser.add_argument(
|
| 55 |
+
"--metrics",
|
| 56 |
+
type=str,
|
| 57 |
+
nargs="+",
|
| 58 |
+
default=("rouge1", "rouge2", "rougeL"),
|
| 59 |
+
help="ROUGE metrics to compute.",
|
| 60 |
+
)
|
| 61 |
+
parser.add_argument(
|
| 62 |
+
"--source-field",
|
| 63 |
+
type=str,
|
| 64 |
+
default="source",
|
| 65 |
+
help="Field name containing the input document in the JSONL examples.",
|
| 66 |
+
)
|
| 67 |
+
parser.add_argument(
|
| 68 |
+
"--target-field",
|
| 69 |
+
type=str,
|
| 70 |
+
default="summary",
|
| 71 |
+
help="Field name containing the reference summary in the JSONL examples.",
|
| 72 |
+
)
|
| 73 |
+
parser.add_argument(
|
| 74 |
+
"--no-stemmer",
|
| 75 |
+
action="store_true",
|
| 76 |
+
help="Disable Porter stemming inside the ROUGE scorer (defaults to enabled).",
|
| 77 |
+
)
|
| 78 |
+
parser.add_argument(
|
| 79 |
+
"--output",
|
| 80 |
+
type=Path,
|
| 81 |
+
default=None,
|
| 82 |
+
help="Optional path to save a JSON report with aggregate metrics and sample counts.",
|
| 83 |
+
)
|
| 84 |
+
return parser.parse_args()
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def load_examples(
|
| 88 |
+
path: Path,
|
| 89 |
+
source_field: str,
|
| 90 |
+
target_field: str,
|
| 91 |
+
max_samples: int | None,
|
| 92 |
+
) -> List[Tuple[str, str]]:
|
| 93 |
+
examples: List[Tuple[str, str]] = []
|
| 94 |
+
with path.open("r", encoding="utf-8") as handle:
|
| 95 |
+
for line in handle:
|
| 96 |
+
line = line.strip()
|
| 97 |
+
if not line:
|
| 98 |
+
continue
|
| 99 |
+
record = json.loads(line)
|
| 100 |
+
try:
|
| 101 |
+
source = str(record[source_field])
|
| 102 |
+
target = str(record[target_field])
|
| 103 |
+
except KeyError as exc: # pragma: no cover - invalid data surface at runtime
|
| 104 |
+
raise KeyError(f"Missing field in record: {exc} (available keys: {list(record)})") from exc
|
| 105 |
+
examples.append((source, target))
|
| 106 |
+
if max_samples is not None and len(examples) >= max_samples:
|
| 107 |
+
break
|
| 108 |
+
if not examples:
|
| 109 |
+
raise ValueError(f"No examples loaded from {path}")
|
| 110 |
+
return examples
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def batched(items: Sequence[Tuple[str, str]], batch_size: int) -> Iterable[Sequence[Tuple[str, str]]]:
|
| 114 |
+
for start in range(0, len(items), batch_size):
|
| 115 |
+
yield items[start : start + batch_size]
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def aggregate_scores(raw_scores: Dict[str, Dict[str, List[float]]]) -> Dict[str, Dict[str, float]]:
|
| 119 |
+
aggregated: Dict[str, Dict[str, float]] = {}
|
| 120 |
+
for metric, components in raw_scores.items():
|
| 121 |
+
aggregated[metric] = {
|
| 122 |
+
component: (fmean(values) if values else 0.0) for component, values in components.items()
|
| 123 |
+
}
|
| 124 |
+
return aggregated
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def main() -> None:
|
| 128 |
+
args = parse_args()
|
| 129 |
+
|
| 130 |
+
pipeline, _ = create_inference_pipeline(
|
| 131 |
+
checkpoint_path=args.checkpoint,
|
| 132 |
+
labels_path=args.labels,
|
| 133 |
+
tokenizer_dir=args.tokenizer_dir,
|
| 134 |
+
model_config_path=args.model_config,
|
| 135 |
+
device=args.device,
|
| 136 |
+
summary_max_length=args.max_length,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
examples = load_examples(args.data, args.source_field, args.target_field, args.max_samples)
|
| 140 |
+
scorer = rouge_scorer.RougeScorer(list(args.metrics), use_stemmer=not args.no_stemmer)
|
| 141 |
+
|
| 142 |
+
score_store: Dict[str, Dict[str, List[float]]] = defaultdict(lambda: defaultdict(list))
|
| 143 |
+
|
| 144 |
+
for batch in tqdm(
|
| 145 |
+
list(batched(examples, args.batch_size)),
|
| 146 |
+
desc="Evaluating",
|
| 147 |
+
total=(len(examples) + args.batch_size - 1) // args.batch_size,
|
| 148 |
+
):
|
| 149 |
+
documents = [item[0] for item in batch]
|
| 150 |
+
references = [item[1] for item in batch]
|
| 151 |
+
predictions = pipeline.summarize(documents, max_length=args.max_length)
|
| 152 |
+
|
| 153 |
+
for reference, prediction in zip(references, predictions):
|
| 154 |
+
scores = scorer.score(reference, prediction)
|
| 155 |
+
for metric_name, score in scores.items():
|
| 156 |
+
score_store[metric_name]["precision"].append(score.precision)
|
| 157 |
+
score_store[metric_name]["recall"].append(score.recall)
|
| 158 |
+
score_store[metric_name]["fmeasure"].append(score.fmeasure)
|
| 159 |
+
|
| 160 |
+
aggregated = aggregate_scores(score_store)
|
| 161 |
+
report = {
|
| 162 |
+
"num_examples": len(examples),
|
| 163 |
+
"metrics": aggregated,
|
| 164 |
+
"config": {
|
| 165 |
+
"data": str(args.data),
|
| 166 |
+
"checkpoint": str(args.checkpoint),
|
| 167 |
+
"tokenizer_dir": str(args.tokenizer_dir),
|
| 168 |
+
"metrics": list(args.metrics),
|
| 169 |
+
"max_length": args.max_length,
|
| 170 |
+
"batch_size": args.batch_size,
|
| 171 |
+
"device": args.device,
|
| 172 |
+
},
|
| 173 |
+
}
|
| 174 |
+
|
| 175 |
+
print(json.dumps(report, indent=2))
|
| 176 |
+
if args.output:
|
| 177 |
+
args.output.parent.mkdir(parents=True, exist_ok=True)
|
| 178 |
+
with args.output.open("w", encoding="utf-8") as handle:
|
| 179 |
+
json.dump(report, handle, ensure_ascii=False, indent=2)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
if __name__ == "__main__":
|
| 183 |
+
main()
|